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Abstract

One of the main features of adaptive systems is an oscillatory convergence that ex-
acerbates with the speed of adaptation. Over the past two decades several attempts
have been made to provide adaptive solutions with guaranteed transient properties.
In this work it is shown that Closed-loop Reference Models (CRMs) can result in
improved transient performance over their open-loop counterparts in model reference
adaptive control. In addition to deriving bounds on L-2 norms of the derivatives of
the adaptive parameters which are shown to be smaller, an optimal design of CRMs
is proposed which minimizes an underlying peaking phenomenon. The analytical
tools proposed are shown to be applicable for a range of adaptive control problems
including direct control, composite control with observer feedback and partial states
accessible control. In addition a detailed study of the applicability of CRM adaptive
control to very flexible aircraft is presented.

Following the NASA Helios flight mishap in 2003 there has been a push for greater
understanding of the aerodynamic–structural coupling that occurs in light, very flex-
ible, flying wings. Previous efforts in that direction revealed that the flexible aircraft
had instability in the phugoid mode for large dihedral angles and that including the
flexible dynamics was necessary to arrive at an appropriate trim condition. In this
thesis, we show how these large dihedral excursions can occur in the presence of
turbulence, by constructing an overall nonlinear model that captures the dominant
dynamics of a very flexible aircraft. The thesis closes with the application of CRM
adaptive control to the VFA model.

Thesis Supervisor: Anuradha M. Annaswamy
Title: Senior Research Scientist
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Chapter 1

Introduction

Control systems arise anytime the output of a system needs to be regulated or forced
to track a command. The first instances of control systems appeared in the first
century A.D., in the form of water clocks. [7] The most cited modern example of
a mechanical control system is that of the fly-ball governor, see Figure 1-1. [3] The
fly-ball governor was first used to regulate the speed of the output shaft on a steam
engine. The output shaft of the steam engine is connected to the shaft that the ball
governors rotate on. As the speed of the output shaft increases, the the scissor arms
spread, and the linkage at the top of figure then decreases the throttle setting on the
righthand side of the figure. This illustrates the defining feature of automatic control,
the notion of feedback. [80] That is, a system output is measured and then fed back
into the input of the system. Feedback control systems are ever-present occurring
naturally or engineered into our machines.

The basic premise of any adaptive control system is to have the output of a
plant follow a prescribed reference model through the online adjustment of control
parameters. [4, 32, 37, 41, 47, 61, 73] Adaptive control originated in 1958 [79] and was
popular in aircraft control for most of the 60’s until the X-15 flight mishap in 1967 [17,
25]. It was clear that adaptive control was in its infancy and it would take two more

Figure 1-1: Centrifugal governor [55].

15



decades until the stability of adaptive systems was fully understood [18,26,58,62,63].
Following stability of adaptive control systems in the 80s and their robustness into
the 90s [31, 36, 59, 60, 67], several attempts have been made to quantify transient
performance (see for example, [10, 38, 81]).

Historically, the reference models in MRAC have been open-loop in nature (see
for example, [32, 61]), with the reference trajectory generated by a linear dynamic
model, and unaffected by the plant output. The notion of feeding back the model
following error into the reference model was first reported in [49] and more recently
in [20–23, 44, 45, 74, 75]. We denote adaptive systems with an Open-loop Reference
Model as ORM-adaptive systems and those with closed-loop reference models as
CRM-adaptive systems, see Figure 1-2.

Combined/composite direct and indirect Model Reference Adaptive Control (CM-
RAC) [16,72], is another class of adaptive systems in which a noticeable improvement
in transient performance was demonstrated. While the results of these papers estab-
lished stability of combined schemes, no rigorous guarantees of improved transient
performance were provided, and have remained a conjecture [43]. This thesis is con-
cerned with rigorously proving how one can design CRM adaptive systems with im-
proved transient performance over their ORM counterparts.

In keeping with tradition our application of interest is that of aircraft control. Re-

Reference
Model

Reference
Model

Plant

Plant

Controller

Controller

∑

∑

Input

Input

Error

Error

Open–Loop Reference

Closed–Loop Reference

Figure 1-2: Open–loop reference model (top) does not use feedback from the error
state to modify the reference trajectory. The closed–loop reference model (bottom)
uses the error signal as an extra input into the reference model.

16



(a) (b) (c)

Figure 1-3: (a) Helios flying at normal dihedral. (b) Helios flying at large dihedral.
(c) Helios breaking apart mid flight.

cently the control of very flexible aircraft has become of interest. One such example is
the Helios aircraft, depicted in Figure 1-3. On June 26th 2003 the aircraft broke apart
mid–flight during testing. Throughout the flight the aircraft encountered turbulence.
After approximately 30 minutes of flight time a larger than expected wing dihedral
formed and the aircraft began a slowly diverging pitch oscillation. The oscillations
never subsided and led to flight speeds beyond the design specifications for Helios.
The loading on the aircraft compromised the structure of the aircraft and the skin of
the aircraft pulled apart. One of the key recommendations that came from the flight
mishap investigation was to, “Develop more advanced, multidisciplinary (structures,
aeroelastic, aerodynamics, atmospheric, materials, propulsion, controls, etc) “time-
domain” analysis methods appropriate to highly flexible, “morphing” vehicles” [65].
This thesis addresses this recommendation directly with a control oriented model of
very flexible aircraft and an adaptive control design.

The thesis is organized as follows: Chapter 2 contains the mathematical prelimi-
naries, Chapter 3 contains the main theoretical components of transient response and
CRM systems, Chapter 4 analysis’s the benefits of CRMs in SISO adaptive control,
Chapter 5 presents a model for control design of very flexible aircraft, Chapter 6 con-
tains the adaptive control design for very flexible aircraft, and Chapter 7 ends with
conclusions and future directions.

1.1 Contributions by Chapter

Chapter 2

Very little in this chapter is original. All of the definitions pertaining to real analysis
were taken from [69]. The functional analysis results were taken from MIT 18.102
course notes. The stability definitions originated in [52] with the necessary conditions
from stability coming from [51, 61].

17



Chapter 3

The main contribution of this thesis comes in this chapter. It is shown how one can
design adaptive systems with improved transients in terms of model following error
and a reduced L-2 norm of the derivative of the adaptive parameters. It is then
shown that reducing the L-2 norm of the derivative of a signal directly correlates into
a reduction of the high frequency oscillations of the system. Another major contribu-
tion from this chapter is the introduction of adaptive systems with filtered regressor
vectors. It is shown that introducing CRMs into CMRAC results in the recovery of
a separation like principle.

Chapter 4

This chapter extends the results of Chapter 3 to the SISO case. There are three con-
tributions from this chapter: 1) Using CRM, one can follow reference models that are
not SPR. 2) Using CRMs in SISO control one can choose the feedback gain such that
the error model reduces to a first order decay, 3) Analysis of adaptive systems always
comes in the form of non-minimal state analysis. This chapter illustrates that much
tighter performance bounds can be achieved when analyzing the minimal state-space
models. This chapter also shows that the results for the scalar adaptive system in
Chapter 3 were not a fluke.

Chapter 5

This chapter introduces a first principles simple model of very flexible aircraft. A
trend in the literature surrounding VFA is that complicated CFD models are needed
to explain why the Helios flight mishap occurred. However a simple understudying
of controllability could have predicted the demise of he Helios aircraft. It is shown
through simulation that VFA can suffer from turbulence induced dihedral drift, the
catalyst for the Helios crash.

Chapter 6

This chapter analyzes a modern interpretation of output feedback adaptive control.
This is accomplished via a zero annihilation technique and an LQG/LTR technique
first realized in [44]. A different stability analysis is presented for the LQG/LTR
technique as compared to that in [47] where limt→∞ e(t) = 0. Also, the need for a
prescribed degree of stability is relaxed. The Chapter is closed with the application
of LQG/LTR adaptive control to the VFA model presented in Chapter 5.
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Chapter 7

This chapter contains the conclusions and future directions.
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Chapter 2

Mathematical Preliminaries and
Stability Definitions

2.1 Introduction

This chapter introduces the basic mathematical principles and theorems necessary to
discuss the stability and transient performance of adaptive systems.

2.2 Preliminaries

2.2.1 Vector Norms

A norm on a vector space V , usually denoted as ‖ ‖, maps from a vector space V
to the real numbers and is always greater than or equal to zero. Our vector spaces
of interest are Rn (vectors containing all real elements) and possibly Cn (vectors of
complex elements).

Definition 2.1 (Norm). V is a vector space over the field K. Let the norm be defined
as ‖·‖ : V −→ [0,∞). Let a ∈ K and x, y ∈ V . All norms satisfy

(a) ‖x‖ = 0 if and only if x = 0

(b) ‖ax‖ = |a| ‖x‖

(c) ‖x+ y‖ ≤ ‖x‖+ ‖y‖

With the following subscript definition,

xT =
[
x1 x2 · · · xn

]

for all x ∈ Rn, 1 ≤ p <∞

‖x‖p ,
(

n∑

i=1

|xi|p
)1/p
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and
‖x‖∞ , sup

i
|xi| .

The norms are referred to as p-norms (1-norm, 2-norm, . . ., ∞-norm). It will always
be assumed that when the subscript on the p-norm is not given, we are assuming
p = 2,

‖x‖ , ‖x‖2.
A visualization of these norms is given in Figure 2-1.

‖x‖1 ‖x‖2 ‖x‖∞

Figure 2-1: Norms in R2.

2.2.2 Matrix Norms

Let A ∈ Rm×n then the induced p-norm is defined as

‖A‖p , sup
‖x‖=1

‖Ax‖p
‖x‖p

.

when the Euclidean norm is used, i.e. p = 2 we have that

‖A‖2 =
√

λmax(ATA)

where λmax denotes the maximum eigenvalue. Also as before, when no p value is
denoted, it is assumed that p = 2,

‖A‖ = ‖A‖2.

Property 2.1. The induced p-norms have two special properties. Let x ∈ Rn, A ∈
Rm×n and B ∈ Rn×d

‖Ax‖p ≤ ‖A‖p‖x‖p
‖AB‖p ≤ ‖A‖p‖B‖p.

(2.1)

Note that this property need not hold for all matrix norms.

Definition 2.2. When a norm satisfies the second property above, ‖AB‖p ≤ ‖A‖p‖B‖p
it is called a sub-multiplicative norm.
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Definition 2.3. Let A ∈ R
n×n, the Frobenius norm is defined as

‖A‖F =
√

trace(ATA)

Property 2.2. The Frobenius norm is a sub-multiplicative norm.

2.2.3 Signal Norms

Let x(t) : R→ R
n and 1 ≤ p <∞

‖x(t)‖Lp ,

(

lim
t→∞

∫ t

0

‖x(τ)‖pdτ
)1/p

. (2.2)

and
‖x(t)‖L∞ , sup

t
‖x(t)‖ (2.3)

Note that we are not using the essential supremum here, but just the supremum.
If the essential supremum were being used, then we would allow the signal to be
unbounded on a set of measure zero, and it would still be in L∞. With our definition,
if a signal is in L∞ then the signal is bounded for all time.

The above norm is called the Lp-norm. The p-norm was used on a time varying
signal x(t) giving us a time dependent “norm” ‖x(t)‖. At each fixed t, ‖x(t)‖ is a
norm, but it is not true to say that for all t, ‖x(t)‖ is a norm. We need a scalar value
for all t, so we resorted to integration or using the supremum operator. The above
definitions also hold for the induced matrix norms.

It is notationally equivalent to write Lp, L
p, Lp, Lp. Its just a preference of

superscript, subscript, and or calligraphic text.

Lemma 2.1. For a, b ≥ 0 and t ∈ [0, 1] the following holds

eta+(1−t)b ≤ tea + (1− t)eb.

Proof. This proof follows from the fact that the exponential function is concave up
and any secant line is always necessarily above the exponential function between the
two points of intersection.

Theorem 2.1 (Young’s Inequality). For a, b ≥ 0 and p, q ≥ 1 the following holds

ab ≤ ap

p
+
bq

q

where
1

p
+

1

q
= 1.

Proof. Begin with the equality

ab = elog a+log b

= e
1
p
p log a+ 1

q
q log b
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From the fact that 1/p = 1− 1/q and using Lemma 2.1 we have that

ab ≤ 1

p
ep log a +

1

q
eq log b

=
1

p
ap +

1

q
bq

Theorem 2.2 (Hoelder’s Inequality). Let f(t) and g(t) be scalar functions of time
with bounded Lp and Lq norms respectively where 1 = 1/p+ 1/q, then

‖f(t)g(t)‖L1 ≤ ‖f(t)‖Lp‖g(t)‖Lq (2.4)

Proof. Starting with the triangle inequality we have

‖f(t)g(t)‖
‖f(t)‖Lp‖g(t)‖Lq

≤ ‖f(t)‖
‖f(t)‖Lp

‖g(t)‖
‖g(t)‖Lq

.

Application of Theorem leads to

‖f(t)g(t)‖
‖f(t)‖Lp‖g(t)‖Lq

≤
( ‖f(t)‖
‖f(t)‖Lp

)p

+

( ‖g(t)‖
‖g(t)‖Lq

)q

.

Integrating both sides we have

1

‖f(t)‖Lp‖g(t)‖Lq

∫

‖f(t)g(t)‖dt ≤
∫

1

p

( ‖f(t)‖
‖f(t)‖Lp

)p

dt+

∫
1

q

( ‖g(t)‖
‖g(t)‖Lq

)q

dt

=
1

p
+

1

q

= 1.

Multiplying both sides by ‖f(t)‖Lp‖g(t)‖Lq gives us the result.

Proposition 2.1 (Cauchy-Schwarz Inequality). Holder’s inequality with p = 2.

2.2.4 Positive Matrices

Definition 2.4. A matrix M ∈ Rn×n is positive definite if zTMz > 0∀z 6= 0 and is
often denoted as M > 0.

Lemma 2.2. Let M be a symmetric matrix with the following decomposition:

M =

[
A B
BT C

]

A = AT and C = CT is full rank. M > 0 if and only if

• C > 0
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• A− BC−1BT > 0

Proof. Given that C is full rank, the inverse of C exists and therefore the following
relation holds

M =

[
A B
BT C

]

=

[
I BC−1

0 I

] [
A−BC−1BT 0

0 C

] [
I BC−1

0 I

]T

.

A block diagonal matrix is positive definite iff all diagonal blocks are positive definite.
This concludes the proof, thus M > 0 off C > 0 and A−BC−1BT .

2.2.5 Continuity

We start with the definition of a metric space.

Definition 2.5 (Metric). A set X whose elements are called points, is said to be a
metric space, if with any two points p and q in X there is associated a real number
d(p, q), called the distance from p to q, such that

• d(p, q) > 0 if p 6= q ; d(p, p) = 0

• d(p, q) = d(q, p)

• d(p, q) ≤ d(p, r) + d(r, q), for any r ∈ X
A function with these three properties is called a distance function or a metric.

Note that a norm on any subset of the real or complex numbers is a metric, but
not all metrics are norms. Norms have two extra properties as compared to distance
functions, and those are translation invariance and scaling.

Definition 2.6 (Limit Point). Let X and Y be metric spaces; supposes E ⊂ X , f
maps E into Y , and p is a limit point of E,

lim
x→p

f(x) = q

if there is a point q ∈ Y with the following property: For every ǫ > 0, there exists a
δ > 0 s.t.

dY (f(x), q) < ǫ

for all points x ∈ E for which

0 < dX(x, p) < δ

where dX and dY are distance functions in X and Y respectively.

Definition 2.7 (Continuity). Let X and Y be metric spaces; supposes E ⊂ X , p ∈ E
and f maps E into Y . Then f is continuous at p, if for every ǫ > 0 there exists a
δ > 0 such that

dY (f(x), f(p)) < ǫ

for all point x ∈ E for wich dx(x, p) < δ.
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Definition 2.8 (Uniform Continuity). Let f be a mapping of a metric space X into
a metros space Y . If for every ǫ > 0 there exists a δ > 0 such that

dY (f(p), f(q)) < ǫ

for all p and q in X for which dx(p, q) < δ.

2.2.6 Convergence

Theorem 2.3. Let {pn} be a sequence in a metric space X. Then,

1. {pn} converges to p ∈ X iff every neighborhood of p contains all but finitely
many of the terms of {pn}.

2. If p ∈ X and p′ ∈ X and if {pn} → p and {pn} → p′, then p = p′.

3. If {pn} converges, then {pn} is bounded.

4. If E ⊂ X and if p is a limit point of E, then there is a sequence {pn} ∈ E such
that p = limn→∞ pn

Theorem 2.4. Suppose {sn} is monotonic. Then {sn} converges iff it is bounded.

Proof. Suppose sn ≤ sn+1 . Let E be the range of {sn} If {sn} is bounded, let s be
the least upper bound of E. Then sn < s and for every ǫ > 0, there exists and integer
N such that s− ǫ < sN ≤ s for otherwise s− ǫ would be the least upper bound of E.
Since {sn} increases, s− ǫ < sn ≤ s, ∀n ≥ N , which shows that {sn} converges to
s. The converse follows from Theorem 2.3.

Definition 2.9. A sequence of functions {fn(x)}, n = 1, 2, 3, . . . converges point wise
on set E to f , if for each x ∈ E there exists an ǫ(x) such that n ≥ N implies

‖f(x)− fn(x)‖ ≤ ǫ.

The convergence is uniform if ǫ is independent of x.

Theorem 2.5. Suppose fn → f uniformly on a set E in a metric space. Let x be a
limit point of E, then

lim
t→x

lim
n→∞

fn(t) = lim
n→∞

lim
t→x

fn(t)

Proof. See [69, Theorem 7.11].

2.3 Definitions of Stability

Consider a dynamical system of time, t ∈ R, varying state x ∈ Rn satisfying

x(t0) = x0

ẋ(t) = f(x(t), t).
(2.5)
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We are only interested in systems with equilibrium at x = 0, so that f(0, t) = 0 ∀t.
The solution to the differential equation in (2.5) is a transition function φ(t; x0, t0)
such that

φ(t0; x0, t0) = x0. (2.6)

Below we give the various definitions of stability as defined in [27, 35, 52, 61]

Definition 2.10 (Stability). Let t0 ≥ 0, the equilibrium is

(i) Stable, if for all ǫ > 0 there exists a δ(ǫ, t0) > 0 s.t. ‖x0‖ ≤ δ implies
‖φ(t0; t0, x0)‖ ≤ ǫ ∀ t ≥ t0.

(ii) Attracting, if there exists a ρ(t0) > 0 such that for all η > 0 there exists a
T (η, x0, t0) such that ‖x0‖ ≤ ρ implies ‖φ(t; x0, t0)‖ ≤ η for all t ≥ t0 + T .

(iii) Asymptotically Stable, if it is stable and attracting, see Figure 2-2.

(iv) Equiasymptotically Attracting, if the T in (ii) is uniform in x0 and takes the
form T (η, ρ(t0), t0).

(v) Equiasymptotically Stable, if it is stable and equiasymptotically attracting.

(vi) Uniformly Stable, if the δ in (i) is uniform in t0, thus taking the form δ(ǫ).

(vii) Uniformly Attracting, is equiasymptotic attracting where the ρ, T do not depend
on t0.

(viii) Uniformly Asymptotically Stable, (UAS) if it is uniformly stable and uniformly
attracting.

(ix) Exponentially Asymptotically Stable (EAS) If the there exists a ν > 0, and for
all ζ > 0 there exists a δ(ζ) such that ‖x0‖ ≤ δ implies that ‖φ(t; x0, t0)‖ ≤
ζe−ν(t−t0) [52].

(x) Exponentially Stable If the there exists a ν > 0 and µ > 0 such that ‖φ(t; x0, t0)‖ ≤
µ‖x0‖e−ν(t−t0)

Definition 2.11 (Topology of Stability). The following define the neighborhoods
around the equilibrium for which the stability results hold.

(i) Global, if the results hold for all x0.

(ii) Local, if the results only hold for x0 in a neighborhood around the equilibrium.

(iii) Semi–global, if the results hold globally for only a subset of the state space and
locally for the other subset of the state space.
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δ, ρ

ǫ

t

η

x0

t0

t0 + Tφ

Figure 2-2: Asymptotic stability, adapted from [35].

2.4 Conditions for Stability

Consider dynamics of the form

ẋ = f(t, x), x(t0) = x0. (2.7)

where f(0, t) = 0 ∀t > 0.

Theorem 2.6 (Lyapunov’s Direct (The Second) Method). The equilibrium state of
(2.7) is uniformly asymptotically stable in the large if a scalar function V (x, t) with
continuous first partial derivatives with respect to x and t exists such that V (0, t) = 0
and if the following conditions are satisfied

1. V (x, t) is positive definite, i.e. there exists a non–decreasing scalar function α
such that α(0) = 0 and, for all t and all x 6= 0

0 < α (‖x‖) ≤ V (x, t)

2. There exist a continuous scalar function γ s.t. γ(0) = 0 and the derivative V̇
of V along all system directions, satisfies for all t

V̇ =
∂V

∂t
+ (∇V )T f(x, t) ≤ −γ (‖x‖) < 0, ∀x 6= 0.

3. There exist as a continuous non–decreasing scalar function such that β(0) = 0
and for all t

V (x, t) ≤ β (‖x‖) .
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This is commonly referred to as “V is decrescent” (western literature) or “V
has an infinitely small upper bound” (Russian literature).

4. lim‖x‖→∞ β(‖x‖) =∞

Proof. The proof follows from [35], and is only here for completeness. From Theorem
2.6.2 it follows

V (φ(t; x0, t0), t)− V (x0, t0) =
∫ t

t0

V̇ (φ(τ ; x0, t0), τ)dτ < 0, (2.8)

and thus V is strictly decreasing along any trajectory.

Proof of uniform stability: For any ǫ > 0 there exists a δ(ǫ) such that β(δ) < α(ǫ),
see Figure 2-3. Therefore, if ‖x0‖ ≤ δ where t0 is arbitrary, from 2.6.2 and (2.8) it
follows that

α(ǫ) > β(δ) ≥ V (x0, t0) ≥ V (φ(t; x0, t0), t) ≥ α(‖φ(t; x0, t0)‖).

Given that α is positive and nondecreasing, we have the following,

‖φ(t; x0, t0)‖ < ǫ ∀ t ≥ t0, ‖x0‖ ≤ δ,

for arbitrary t0. Thus we have proved uniform stability.

Proof of uniform asymptotic stability: From Theorem 2.6.2, for any constant c1 > 0
there exists an r > 0 such that β(r) ≤ α(c1). For any x0 such that ‖x0‖ ≤ r, by
uniform stability, ‖φ(t; x0, t0)‖ < c1 for all t ≥ t0, where t0 is arbitrary. For any
0 < µ ≤ ‖x0‖, there exists a ν(µ) > 0 such that β(ν) < α(µ), see Figure 2-3.
Set c2(µ, r) as the minimum of the continuous function γ(‖x‖) on the compact set
ν(µ) ≤ ‖x‖ ≤ c1(r), and define T (µ, r) , β(r)/c2(µ, r) > 0. Now assume for proof
by contraction that ‖φ(t; x0, t0)‖ > ν over the interval t0 ≤ t ≤ t1 = t0 + T . From
2.6.2 and (2.8) it follows that

0 < α(ν) ≤V (φ(t1; x0, t0), t1)
≤V (x0, t0)− (t1 − 10)c2

≤β(r)− Tc2 = 0. ⇒⇐

Therefore, for some t = t2 in the interval [t0, t1], it follows that ‖x2‖ = ‖φ(t; x0, t0)‖ =
ν. Therefore

α(‖φ(t; x2, t2)‖) ≤V (φ(t; x2, t2), t)

≤V (x2, t2)

≤β(ν) < α(µ)

for all t ≥ t2. Therefore,

‖φ(t; x0, t0)‖ < µ ∀ t ≥ t0 + T (µ, r) ≥ t2, ‖x0‖ ≤ r
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which is the definition of uniform asymptotic stability.
Proof of uniform asymptotic stability in the large: From Condition 4 in Theorem

2.6, the r in the proof of uniform asymptotic stability can be arbitrary large. Uniform
boundedness also holds.

β(‖x‖)

V (x, t)

α(‖x‖)

δ(ǫ) ǫ

β(δ)

α(ǫ)

‖x‖0

Figure 2-3: Lyapunov stability, adapted from [35].

δ

ǫ

x0

V (x) = β(δ)

V (x) = α(ǫ)

Figure 2-4: Asymptotic stability, adapted from [35].
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Proposition 2.2. If V (x, t) in Theorem 2.6 is positive definite and V̇ (x, t) ≤ 0, then
x(t) is bounded for all time.

Proof. Given that V̇ is negative semidefinite, V (x, t) ≤ V (x0, t0) <∞. From the fact
that V (x, t) is positive definite it follows that ‖x(t)‖ <∞.

Lemma 2.3. If f : R+ → R is uniformly continuous for t ≥ 0 and if

lim
t→∞

∫ t

0

|f(τ)| dτ <∞

thus f(t) ∈ L1, then
lim
t→∞

f(t) = 0.

Proof. See [61, Lemma 2.12]

Corollary 2.1. If g ∈ L2 ∩ L∞ and ġ is bounded, then limt→∞ g(t) = 0.

Proof. Choose f(t) = g2(t) and the conditions of Lemma 2.3 are satisfied.

Lemma 2.4. If g ∈ L2 and ġ is bounded, then limt→∞ g(t) = 0.

Proof. This follows by contradiction. Assume limt→∞ e(t) 6= 0. Then there exists an
infinite unbounded sequence {tn}n∈N and ε > 0 such that |e(ti)| > ε. And because
ė is bounded, e is uniformly continuous, and so |e(t) − e(ti)| ≤ k|t − ti| ∀ t, ti ∈ R+

for some k > 0, and we have |e(t)| ≥ ε − |e(t) − e(ti)|. From the reverse triangle
inequality

|e(ti)|2 − 2|e(t)− e(ti)|2 ≤ 2|e(t)|2

and integrate both sides from ti to ti + δ

∫ ti+δ

ti

(e(ti))
2dτ − 2

∫ ti+δ

ti

(e(τ)− e(ti))2dτ ≤ 2

∫ ti+δ

ti

|e(τ)|2dτ.

Substituting in ε < |e(ti)| and the definition from uniform continuity

∫ ti+δ

ti

ε2dτ − 2

∫ ti+δ

ti

k2(τ − ti)2dτ ≤
∫ ti+δ

ti

(e(ti))
2dτ − 2

∫ ti+δ

ti

(e(τ)− e(ti))2dτ

and thus

∫ ti+δ

ti

ε2dτ − 2k2
∫ ti+δ

ti

(
τ 2 − 2τti + t2i

)
dτ ≤ 2

∫ ti+δ

ti

|e(τ)|2dτ.

Integrating the left hand side

ε2δ

2
− k2

(
δ3

3

)

≤
∫ ti+δ

ti

|e(τ)|2dτ.

31



Choosing δ = ε
k
,

∫ ti+δ

ti

|e(τ)|2dτ ≥ ε2δ

6

Taking the limit as δ → ∞ implies that limt→∞

∫ t

0
|e(τ)|2dτ is not finite. This con-

tradicts the assumption that e ∈ L2 and so we have limt→∞ e(t) = 0.

2.5 Linear Systems

Definition 2.12. A matrix A ∈ Rn×n is Hurwitz if all the eigenvalues of A are in
the open left half plane of C.

Theorem 2.7 (Lyapunov Equation). A ∈ Rn×n is Hurwitz if and only if, for any
Q = QT > 0 there exists a unique P = P T > 0 satisfying

ATP + PA = −Q. (2.9)

Proof. See [61, Theorem 2.10]

Example 2.1. The linear system

ẋ(t) = Ax(t) (2.10)

where x ∈ Rn and A ∈ Rn×n is Hurwizt, is uniformly asymptotically stable in the
large. This can be proved as follows: Consider the Lyapunov candidate

V (x, t) = x(t)TPx(t).

Taking the time derivative along the system trajectories in (2.10) results in V̇ (x, t) =
−x(t)T (ATP + PA)x(T ). Using Theorem 2.7 we have

V̇ (x, t) = −x(t)TQx(t).

From Theorem 2.6, x = 0 is uniformly asymptotically stable in the large.

Consider the linear time–varying system

ẋ(t) = F (t)x(t), (2.11)

which has solutions
φ(t; x0, t0) = Φ(t, t0)x0, (2.12)

where Φ is the state transition matrix.

Theorem 2.8. Given the system dynamics in (2.11), the following three statements
are equivalent

(a) The equilibrium is uniformly asymptotically stable.
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(b) The system is exponentially asymptotically stable.

(c) The system is exponentially stable.

Proof. This proof follows from [35, Theorem 3]. For any system, (c)→ (b)→ (a)
trivially. We now prove that (a) implies (b). Given that uniform asymptotic stability
implies uniform stability we note that for all ǫ > 0, 0 ≤ ‖x0‖ ≤ δ(ǫ) which by linearity
in (2.12), implies that

δ−1‖φ(t; x0, t0)‖ ≤ ‖Φ(t, t0)‖δ−1‖x0‖ ≤ ‖φ(t, t0)‖ ≤ δ−1ǫ (2.13)

By uniform asymptotic stability choose T (2−1, 1) so that ‖Φ(t0 + T, t0)‖ ≤ 1/2 inde-
pendent of t0. It can be shown by induction that

‖Φ(t0 + kT, t0)‖ ≤‖Φ(t0 + kT, t0 + (k − 1)T )‖ . . .
‖Φ(t0 + T, t0‖

≤2−k.

(2.14)

Therefore we have that

‖Φ(t, t0)‖ ≤ 2δ−1ǫe−
log(2)

T
(t−t0).

In order to prove that this is the same as Exponential Asymptotic Stability, ζ = 2ǫδ−1

and ν = log(2)T−1. Note that T is a fixed constant and therefore ν is a constant for all
initial conditions. Given that the dynamics in (2.11) are linear, in order for stability
to hold, there must exist a finite upper bound on Φ independent of t. Therefore, for
all ǫ > 0, there exists a µ such that 2δ−1ǫ ≤ µ <∞. This completes the proof.

Example 2.2. Consider the scaler dynamical system

ẋ(t) = −c(x)x(t).

where

c(x) =

{

1 if x ≤ d0

0 else

The system is globally uniformly stable, but only locally uniformly attracting. There-
fore, the system is not Exponentially Stable. For all ζ > 0, define

δ ,

{

ζ if ζ ≤ d0

d0 else

Thus, for all ‖x0‖ ≤ δ,
‖φ(t; x0, t0)‖ ≤ ζe−(t−t0).

Therefore, the system is Exponentially Asymptoticaly Stable.

Example 2.3. Consider the time response of the dynamical system x(t) ∈ Rn and
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u(t) ∈ R,
ẋ(t) = Ax(t) + bu(t) (2.15)

where A is Hurwitz and further more we are told that u(t) ∈ L2, i.e. there exists a
c1 ≥ 0 such that‖u(t)‖L2 ≤ c1 < ∞. Given that A is hurwitz, there exists c2, c3 > 0
such that

‖eAt‖ ≤ c2e
−c3t. (2.16)

Details on bounding the matrix exponential can be found in [57]. The time series
response of x(t) is

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)u(τ)dτ (2.17)

Using the bound in (2.16) and taking the 2-norm for fixed t we have

‖x(t)‖ ≤ c2e
−c3tx(0) +

∫ t

0

c2e
−c3(t−τ)‖u(τ)‖dτ. (2.18)

Using Holder’s inequality on the last term we have that

‖x(t)‖ ≤ c2e
−c3tx(0) +

√
∫ t

0

c22e
−2c3(t−τ)dτ

√
∫ t

0

‖u(τ)‖2dτ . (2.19)

Using the bound given to us for u(t) we can say

‖x(t)‖ ≤ c2e
−c3tx(0) + c1c2

√
∫ t

0

e−2c3(t−τ)dτ. (2.20)

Lemma 2.5 (Gronwall-Bellman). For u, v ≥ 0 and c1 a positive constant, and if

u(t) ≤ c1 +

∫ t

0

u(τ)v(τ)dτ (2.21)

then
u(t) ≤ c1e

∫ t

0
v(τ)dτ .

Proof. From (2.21) we have

u(t)v(t)

c1 +
∫ t

0
u(τ)v(τ)dτ

≤ v(t).

Integrating both sides between 0 and t we have

log

(

c1 +

∫ t

0

u(τ)v(τ)dτ

)

− log c1 ≤
∫ t

0

v(τ)dτ.
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Adding log c1 to both sides and taking the exponent we have

u(τ) ≤ c1 +

∫ t

0

u(τ)v(τ)dτ ≤ c1e
∫ t
0 v(τ)dτ .

Theorem 2.9. The scalar dynamical system described by

ẋ = (a+ b(t))x (2.22)

with a < 0, b ∈ L2 results in bounded trajectories for x.

Proof. The solutions to (2.22) is

x(t) = eatx(0) +

∫ t

0

ea(t−τ)b(τ)x(τ)dτ.

First note that eatx(0) ≤ x(0), then we can conclude that

x(t) ≤ x(0) +

∫ t

0

ea(t−τ)b(τ)x(τ)dτ,

and taking 2-norms

‖x(t)‖ ≤ ‖x(0)‖+
∫ t

0

‖ea(t−τ)b(τ)‖‖x(τ)‖dτ,

Applying Lemma 2.5 where

c1 =‖x(0)‖
u =‖x(τ)‖
v =‖ea(t−τ)b(τ)‖

results in

‖x(t)‖ ≤‖x(0)‖e
∫ t
0‖e

a(t−τ)b(τ)‖dτ

≤‖x(0)‖e
∫ t

0
‖ea(t−τ)‖‖b(τ)‖dτ

Application of Cauchy Schwarz inequality results in

‖x(t)‖ ≤ ‖x(0)‖e
√

∫ t
0 ‖e

(a(t−τ))‖2dτ
√

∫ t
0 ‖b(τ)‖

2dτ .

The quantity
∫ t

0
‖ea(t−τ)‖2dτ ≤ 1

2|a|
and we are told that b ∈ L2. Thus

‖x(t)‖ ≤ ‖x(0)‖e
√

1
2|a|

‖b(t)‖L2 .

Through out the following subsections we will make use the following system as a
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baseline example:
ẋ(t) = Ax+Bu y = CTx (2.23)

where x ∈ Rn, y ∈ Rm and u ∈ Rp with A,B,C of appropriate dimension in the reals.
The transfer function is then defined as

Z(s) = CT (sI − A)−1B. (2.24)

2.5.1 Transfer Functions

Definition 2.13. A rational transfer function H(s) is a transfer function defined as
H(s) = p(s)/q(s) where p and q are polynomials.

Definition 2.14. A rational transfer functionH(s) is analytic in Ω ifH(s) is bounded
for all s ∈ Ω.

Definition 2.15. Given a transfer function H(s) = (ams
m + · · ·+ a1s+ a0)/(bns

n +
· · ·+ b1s+ b0) the relative degree is defined as

n∗ , n−m.

Definition 2.16 ( [33]). A rational function H(s) is Strictly Positive Real (SPR) iff

• H(s) is analytic in Re[s] ≥ 0,

• Re[H(jω)] > 0 ∀ ω ∈ (−∞,∞) and,

• limω2→∞ ω2Re[H(jω)] > 0 when the relative degree is 1.

When n∗ = 0 the third condition is not needed.

Lemma 2.6 (Meyers Kalman Yakubovich (MKY)). Given a scalar γ ≥ 0, vectors b
and h, and asymptotically stable matrix A, and symmetric positive-definite matrix L,
if

Re[H(iω)] = Re
[γ

2
+ hT (iωI − A)−1b

]

> 0 ∀ ω ∈ (−∞,∞),

then there exists a scalar ǫ > 0, a vector q and P = P T > 0 such that

ATP + PA = −qqT − ǫL
Pb− h =

√
γq.

Proof. See [61, Lemma 2.4]

Lemma 2.7 (Anderson Kalman Yakubovich (AKY)). Define Z(s) = cT (sI −A)−1b.
The poles of Z(s) satisfy Re[s] < −µ. Z(s) is SPR iff there exists P = P T > 0 and
L s.t.

ATP + PA = −LLT − µP = −Q
Pb = c.
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Proof. This follows from Lemma 2.6

Definition 2.17. The matrix pencil of the triple {A,B,C} for the system in (2.23)
is defined as

P (s) =

[
sI − A −B
CT 0

]

(2.25)

Definition 2.18. The transmission zeros of Z(s) in (2.24) are defined as the set

Zt = {s|rank P (s) < n+min(m, p)}

where P (s) is the matrix pencil of (2.23) defined in (2.25)

Lemma 2.8. If the system in (2.23) is square (p=m), and CTB is full rank, then
there are exactly n−m transmission zeros.

Proof. See [11].

2.5.2 Cheap Observer Riccati Equations

Consider A ∈ Rn×n and B,C ∈ Rn×m where (A,CT ) is observable. For any Q0 =
QT

0 > 0 in Rn and R0 = RT
0 > 0 in Rm and for all ν > 0, with

Qν = Q0 +

(

1 +
1

ν

)

BBT , Rν =
ν

ν + 1
R0

the solution Pν = P T
ν > 0 to the well known observer Riccati Equation:

PνA
T + APν −

(

1 +
1

ν

)

PνCR
−1
0 CTPν +Q0 +

(

1 +
1

ν

)

BBT = 0 (2.26)

always exists. Another way of representing the Riccati Equation when the 1/ν terms
are collected is given below

PνA
T + APν − PνCR

−1
0 CTPν +Q0 +BBT +

1

ν

(
BBT − PνCR

−1
0 CTPν

)
= 0 (2.27)

If in addition we assume that the transfer function Z(s) is minimum phase and CTB
is full rank. Then it is well known that the asymptotic expansion

Pν = P0 + P1ν +O(ν2) (2.28)

approximates Pν with P0 = P T
0 > 0. That is limν→0 Pν = P0 and is positive definite,

even in the limit of a cheap observer, i.e. ν goes to 0. [40]

Theorem 2.10 (Corollary 13.1 to Theorem 13.2 in [47]). For the triple {A,B,CT},
minimum phase, fully observable, square and CTB full rank

1. P0 and P1 are symmetric positive definite.
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2. There exists a unitary matrix W ∈ R
m×m such that

P0C = BW T
√

R0

C = P̃0BW
T
√

R0

P̃0B = CR
−1/2
0 W

(2.29)

where P̃0 = P−1
0 and W = (UV )T with

BTCR
−1/2
0 = UΣV.

3. The following two asymptotic relations hold:

PνC = BW T
√

R0 +O(ν)

C = P̃νBW
T
√

R0 +O(ν)

P̃νB = CR
−1/2
0 W +O(ν)

(2.30)

where P̃ν = P−1
ν

Proof. See §13.3 in [47].
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Chapter 3

Closed-loop Reference Model
Adaptive Control

3.1 Introduction

A universal observation in all adaptive control systems is a convergent, yet oscillatory
behavior in the underlying errors. These oscillations increase with adaptation gain,
and as such, lead to constraints on the speed of adaptation. The main obvious chal-
lenge in quantification of transients in adaptive systems stems from their nonlinear
nature. A second obstacle is the fact that most adaptive systems possess an inher-
ent trade-off between the speed of convergence of the tracking error and the size of
parametric uncertainty. In this chapter, we provide a solution to this long standing
problem, and overcome these challenges by proposing an adaptive control design that
judiciously makes use of an underlying linear time-varying system, and introduces
design changes that decouple speed of adaptation from parametric uncertainty.

The basic premise of any adaptive control system is to have the output of a plant
follow a prescribed reference model through the online adjustment of control parame-
ters. Historically, the reference models in Model Reference Adaptive Control (MRAC)
have been open-loop in nature (see for example, [32,61]), with the reference trajectory
generated by a linear dynamic model, and unaffected by the plant output. The notion
of feeding back the model following error into the reference model was first reported
in [49] and more recently in [20–23,44,45,74,75]. Denoting the adaptive systems with
an Open-loop Reference Model as ORM-adaptive systems and those with closed-loop
reference models as CRM-adaptive systems, our goal in this paper is to show how
CRM-adaptive systems can be designed to alleviate the oscillatory property observed
in ORM-adaptive systems, and obtain a satisfactory transient response.

Following stability analysis of adaptive control systems in the 80s and their robust-
ness in the 90s, several attempts have been made to quantify transient performance
(see for example, [10, 38, 81]). The performance metric of interest in these papers
stems from either supremum or L-2 norms of key errors within the adaptive system.
In [38] supremum and L-2 norms are derived for the model following error, the filtered
model following error and the zero dynamics. In [10] L-2 norms are derived for the
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the model following error in the context of output feedback adaptive systems in the
presence of disturbances and un-modeled dynamics. The authors of [81] analyze the
interconnection structure of adaptive systems and discuss scenarios under which key
signals can behave poorly.

In addition to references [10,38,81], transient performance in adaptive systems has
been addressed in the context of CRM adaptive systems in [20–23,44,45,74,75]. The
results in [44, 45] focused on the tracking error, with emphasis mainly on the initial
interval where the CRM-adaptive system exhibits fast time-scales. In [74] and [75],
transient performance is quantified using a damping ratio and natural frequency type
of analysis. However, assumptions are made that the initial state error is zero and
that the closed-loop system state is independent of the feedback gain in the reference
model, both of which may not hold in general.

The central contribution of the chapter is the quantification of transient perfor-
mance in CRM adaptive systems. This is accomplished by deriving L-2 bounds on key
signals and their derivatives in the adaptive system. These bounds are then related
to the corresponding frequency content using a Fourier analysis, thereby leading to
an analytical basis for the observed reduction in oscillations with the use of CRM.
The underlying tools used to achieve these results are CRM, projection algorithm,
L-2 bounds, and fundamental principles of real and functional analysis. It is also
shown that in general, a peaking phenomenon can occur with CRM-adaptive sys-
tems, which then is shown to be minimized through an appropriate design of the
CRM-parameters. Extensive simulation results are provided, illustrating the con-
spicuous absence of these oscillations in CRM-adaptive systems in contrast to their
dominant presence in ORM-adaptive systems. The results of this paper build on
preliminary versions in [20–22] where the bounds obtained were conservative. While
all results derived in this paper are applicable to plants whose states are accessible
for measurement, we refer the reader to [23] for extensions to output feedback.

This chapter also addresses Combined/composite direct and indirect Model Ref-
erence Adaptive Control (CMRAC) [16, 72], which is another class of adaptive sys-
tems in which a noticeable improvement in transient performance was demonstrated.
While the results of these papers established stability of combined schemes, no rigor-
ous guarantees of improved transient performance were provided, and have remained
a conjecture [43]. We introduce CRMs into the CMRAC and show how improved
transients can be guaranteed. We close this paper with a discussion of CRM and
related concepts that appear in other adaptive systems as well, including nonlinear
adaptive control [37] and adaptive control in robotics [73].

This chapter is organized as follows. Section 3.2 contains the basic CRM structure
with L-2 norms of the key signals in the system. Section 3.3 investigates the peaking
in the reference model. Section 3.4 contains the multidimensional states accessible
extension. Section 3.5 investigates composite control structures with CRM. Section
3.6 explores other forms of adaptive control where closed loop structures appear.
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3.2 CRM-Based Adaptive Control of Scalar Plants

Let us begin with a scalar system,

ẋp(t) = apxp(t) + kpu(t) (3.1)

where xp(t) ∈ R is the plant state, u(t) ∈ R is the control input, ap ∈ R is an unknown
scalar and only the sign of kp ∈ R is known. We choose a closed-loop reference model
as

ẋm(t) = amxm(t) + kmr(t)− ℓ(x(t)− xm(t)). (3.2)

All of the parameters above are known and scalar, xm(t) is the reference model state,
r(t) is a bounded reference input and am, ℓ < 0 so that the reference model and the
subsequent error dynamics are stable. The open-loop reference model dynamics

ẋom(t) = amx
o
m(t) + kmr(t) (3.3)

is the corresponding true reference model that we actually want xp to converge to.

The control law is chosen as

u(t) = θ̄T (t)φ(t) (3.4)

where we have defined θ̄T (t) =
[
θ(t) k(t)

]T
and φT (t) =

[
xp(t) r(t)

]T
with an up-

date law
˙̄θ = −γsgn(kp)eφ (3.5)

where γ > 0 is a free design parameter commonly referred to as the adaptive tuning
gain and e(t) = xp(t)− xm(t) is the state tracking error. From this point forward we
will suppress the explicit time dependance of parameters accept for emphasis.

We define the parameter error ˜̄θ(t) = θ̄(t)− θ̄∗, where θ̄∗ ∈ R2 satisfies θ̄∗T =
[
am−ap

kp
km
kp

]T

. The corresponding closed loop error dynamics are:

ė(t) = (am + ℓ)e + kp
˜̄θTφ. (3.6)

3.2.1 Stability Properties of CRM-adaptive systems

Theorem 3.1 establishes the stability of the above adaptive system with the CRM:

Theorem 3.1. The adaptive system with the plant in (3.1), with the controller defined
by (3.4), the update law in (3.5) with the reference model as in (3.2) is globally stable,
limt→∞ e(t) = 0, and

‖e‖2L2
≤ 1

|am + ℓ|

(
1

2
e(0)2 +

|kp|
2γ

˜̄θT (0)˜̄θ(0)

)

. (3.7)
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Proof. Consider the lyapunov candidate function

V (e(t), θ̃(t)) =
1

2
e2 +

|kp|
2γ

˜̄θT ˜̄θ.

Taking the time derivative of V along the system directions we have V̇ = (am+ℓ)e2 ≤
0. Given that V is positive definite and V̇ is negative semi-definite we have that

V (e(t), ˜̄θ(t) ≤ V (e(0), ˜̄θ(0)) <∞. Thus V is bounded and this means in turn that e

and ˜̄θ are bounded, with
‖e(t)‖2L∞

≤ 2V (0). (3.8)

Given that r and e are bounded and the fact that am < 0, the reference model is
stable. Thus we can conclude xm, and therefore xp, are bounded. Given that θ̄∗ is a

constant we can conclude that θ̄ is bounded from the boundedness of ˜̄θ. This can be
compactly stated as e, xp,

˜̄θ, θ̄ ∈ L∞, and therefore all of the signals in the system are
bounded.

In order to prove asymptotic stability in the error we begin by noting that−
∫ t

0
V̇ =

V (e(0), θ̃(0))− V (e(t), θ̃(t)) ≤ V (e(0), θ̃(0)). This in turn can be simplified as

|am + ℓ|
∫ t

0

e(t)2 ≤ V (0) ∀ t ≥ 0.

Dividing by |am + ℓ| and taking the limit as t→∞ we have

‖e‖2L2
≤ V (0)

|am + ℓ| (3.9)

which implies (3.7). Given that e ∈ L2 ∩L∞ and ė ∈ L∞, Lemma 2.4 is satisfied and
therefore limt→∞ e(t) = 0 [61].

Theorem 1 clearly shows that CRM ensures stability of the adaptive system. Also,
from the fact that e ∈ L2 we have that xm(t) → xom(t) as t → ∞ [12, §IV.1, Theo-
rem 9(c)]. The question therefore is if any improvement is possible in the transient
response with the inclusion of ℓ. This is discussed in the following section.

3.2.2 Transient Performance of CRM-adaptive systems

The main impact of the CRM is a modification in the realization of the reference
trajectory, from the use of a linear model to a nonlinear model. This in turn produces
a more benign target for the adaptive closed-loop system to follow, resulting in better
transients. It could be argued that the reference model meets the closed-loop system
half-way, and therefore reduces the burden of tracking on the adaptive system and
shifts it partially to the reference model. In what follows, we precisely quantify this
effect.

As Equation (3.7) in Theorem 3.1 illustrates, the L-2 norm of e has two compo-
nents, one associated with the initial error in the reference model, e(0), and the other
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with the initial error in the parameter space, ˜̄θ(0). The component associated with
˜̄θ(0) is inversely proportional to the product γ |ℓ| and the component associated with
the initial model following error e(0) is inversely proportional to |ℓ| alone. Therefore,
without the use of the feedback gain ℓ it is not possible to uniformly decrease the L-2
norm of the model following error. This clearly illustrates the advantage of using the
CRM over the ORM, as in the latter, ℓ = 0.

While CRM-adaptive systems bring in this obvious advantage, they can also intro-
duce an undesirable peaking phenomenon. In what follows, we introduce a definition
and show how through a proper choice of the gain ℓ, this phenomenon can be con-
tained, and lead to better bounds on the parameter derivatives. As mentioned in
the introduction, we quantify transient performance in this paper by deriving L-2

bounds on the parameter derivative ˙̄θ, which in turn will correlate to bounds on the
amplitude of frequency oscillations in the adaptive parameters. For this purpose, we
first discuss the L-2 bound on e and supremum bound for xm. We then describe a
peaking phenomenon that is possible with CRM-adaptive systems.

L-∞ norm of xm

The solution to the ODE in (3.2) is

xm(t) =eamtxm(0) +

∫ t

0

eam(t−τ)r(τ)dτ − ℓ
∫ t

0

eam(t−τ)e(τ)dτ. (3.10)

The solution to the ODE in (3.3) is

xom(t) = eamtxom(0) +

∫ t

0

eam(t−τ)r(τ)dτ. (3.11)

For ease of exposition and comparison, xm(0) = xom(0) and thus

xm(t) = xom(t)− ℓ
∫ t

0

eam(t−τ)e(τ)dτ. (3.12)

Denoting the difference between the open-loop and closed-loop reference model as
∆xm = xm − xom, using Cauchy Schwartz Inequality on

∫ t

0
eam(t−τ)‖e(τ)‖dτ , and the

bound for ‖e(t)‖L2 from (3.9), we can conclude that

‖∆xm(t)‖ ≤ |ℓ|
√

1

|2am|

√

V (0)

|am + ℓ| . (3.13)

We quantify the peaking phenomenon through the following definition:

Definition 3.1. Let α ∈ R+, a1, a2 are fixed positive constants, x : R+ × R+ → R

and x(α; t) ∈ L2,

y(α; t) , α

∫ t

0

e−a1(t−τ)x(α; τ)dτ,
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Then the signal y(α; t) is said to have a peaking exponent s with respect to α if

‖y(t)‖L∞ ≤ a1α
s + a2.

Remark 3.1. We note that this definition of peaking differs from that of peaking for
linear systems given in [77], and references there in. In these works, the underlying
peaking behavior corresponds to terms of the form κe−αt, α, κ > 0, where any increase
in α is accompanied by a corresponding increase in κ leading to peaking. This can
occur in linear systems where the Jacobian is defective [57]. In contrast, the peaking
of interest in this paper occurs in adaptive systems where efforts to decrease the L2

norm of x through the increase of α leads to the increase of y causing it to peak. This
is discussed in detail below.

From Eq. (12), it follows that ∆xm can be equated with y and e with x in
Definition 1. Expanding V (0), the bound on ∆xm(t) in (3.13) can be represented as

‖∆xm(t)‖ ≤ b1|ℓ|1/2 + b2

( |ℓ|
γ

)1/2

where b1 =
√

e(0)2

2|am|
and b2 =

√
‖ ˜̄θ(0)‖2

2|am|
. We note that γ is a free design parameter in

the adaptive system. Therefore, one can choose γ = |ℓ| and achieve the bound

‖∆xm(t)‖ ≤ b1|ℓ|1/2 + b2. (3.14)

From (3.14) and Definition 1, it follows that with γ = O(|ℓ|), ∆xm has a peaking
exponent of 0.5 with respect to |ℓ|. Similar to (3.14) the following bound holds for
xm:

‖xm(t)‖L∞ ≤ b1|ℓ|1/2 + b3 (3.15)

where b3 = b2 + ‖xom(t)‖L∞ and γ = |ℓ|. That is the bounds in (3.14) and (3.15)
increase with |ℓ|, which implies that ∆xm(t) and therefore xm(t) can exhibit peaking.

While it is tempting to simply pick e(0) = 0 so that b1 = 0, as is suggested in [6],
[7] to circumvent this problem, it is not always possible to do so, as x(0) may not
be available as a measurement because of noise or disturbance that may be present.
In Section III, we present an approach where tighter bounds for xm(t) are derived,
which enables us to reduce the peaking exponent of ∆xm from 0.5 to zero.

Before moving to the L-2 bounds on k̇ and θ̇, we motivate the importance of L-2
bounds on signal derivatives and how they relate to the frequency characteristic of
the signals of interest. We use a standard property of Fourier series and continuous
functions [48, 69] summarized in Lemma 3.1 and Theorem 3.2 below:

Lemma 3.1. Consider a periodic signal f(t) ∈ R over a finite interval T = [t1, t1 + τ ]
where τ is the period of f(t). The Fourier coefficients of f(t) are then given by
F (n) = 1

τ

∫

T
f(t)e−iω(n)tdt with ω(n) = 2πn/τ . If f(t) ∈ C1, given ǫ1 > 0, there exists

an integer N1 such that

(i)
∥
∥
∥f(t)−

∑N1

n=−N1
F (n)eiω(n)t

∥
∥
∥ ≤ ǫ1, ∀t ∈ T.
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If in addition f(t) ∈ C2, then for all ǫ2 > 0 there exists an integer N2 such that

(ii)
∥
∥
∥

d
dt
f(t)−

∑N2

n=−N2
iω(n)F (n)eiω(n)t

∥
∥
∥ ≤ ǫ2, ∀t ∈ T.

Theorem 3.2. If f(t) ∈ C2 and periodic with period τ , then the following equality
holds

∫

T

‖ḟ(t)‖2dt =
∞∑

n=−∞

|F (n)|2 |ω(n)2πn| (3.16)

where F (n) = 1
τ

∫

T
f(t)e−iω(n)tdt, ω(n) = 2πn/τ and T = [t1, t1 + τ ].

Proof. This follows from Parseval’s Theorem. From Lemma 3.1(ii),
∫

T
‖ḟ(t)‖2dt =

∫

T

∥
∥
∑∞

n=−∞ iω(n)F (n)eiω(n)t
∥
∥
2
dt. Using the orthogonality of eiω(n)t we have that

∫ t1+τ

t1
eiω(n)te−iω(m)tdt = 0 for all integers m 6= n. It also trivially holds that

∫ t1+τ

t1

eiω(n)te−iω(n)tdt = τ.

Using these two facts along with the fact that the convergence in Lemma 3.1(ii) is uni-
form, the integral above can be simplified as

∫

T
‖ḟ(t)‖2dt = ∑∞

n=−∞ ω(n)2 |F (n)|2 τ .
Expanding one of the ω(n) terms and canceling the τ term gives us (3.16).

Remark 3.2. From Theorem 3.2 it follows that when the L-2 norm of the derivative
of a function is reduced, the product |F (n)|2 |ω(n)2πn| is reduced for all n ∈ Z.
Given that ω(n) is the natural frequency for each Fourier approximation and |F (n)|
their respective amplitudes, reducing the the L-2 norm of the derivative of a function
implicitly reduces the the amplitude of the high frequency oscillations.

L-2 norm of k̇, θ̇

With the bounds on e and xm in the previous sections, we now derive bounds on
the adaptive parameter derivatives. From (3.5) we can deduce that ‖k̇‖2 = γ2e2r2.
Integrating both sides and taking the supremum of r we have

∫ t

0

‖k̇(τ)‖2dτ ≤ γ2‖r(t)‖2L∞
‖e(t)‖2L2

. (3.17)

Using the bound on ‖e‖L2 from (3.9) we have that

‖k̇(t)‖2L2
≤ 2γ2‖r(t)‖2L∞

V (0)

|am + ℓ| . (3.18)

Similarly, from (3.5) we can derive the inequality

∫ t

0

‖θ̇(τ)‖2dτ ≤2γ2‖e(t)‖2L∞

∫ t

0

e(τ)2dτ + 2γ2‖xm(t)‖2L∞

∫ t

0

e(τ)2dτ. (3.19)
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Using the bounds for ‖e(t)‖L∞ in (3.8), ‖e(t)‖L2 in (3.9), and the following bound on

‖xm(t)‖2L∞
≤ 2‖xom(t)‖2L∞

+
|ℓ|2 V (0)
|am| |am + ℓ| , (3.20)

which follows from the bound on ∆xm(t) in (3.13), the bound in (3.19) can be sim-
plified as

‖θ̇(t)‖2L2
≤4γ2V (0)‖xom(t)‖2L∞

|am + ℓ| + 4γ2
V (0)2

|am + ℓ| + 2γ2
|ℓ|2
|am|

V (0)2

|am + ℓ|2
. (3.21)

From (3.18) it is clear that by increasing |ℓ| one can arbitrarily decrease the
L-2 norm of k̇. The same is not true, however, for the L-2 norm of θ̇ given in
(3.21). Focusing on the first two terms we see that their magnitude is proportional to
γ2/ |am + ℓ|. Letting ℓ approach negative infinity, the first and second second terms in
(3.21) approaches zero and the third term converges to a bound which is proportional
to γ2V (0)2. When ℓ = 0, the second term becomes proportional to γ2V (0)2 and
the last term in (3.21) becomes zero. From the previous discussion it is clear that
regardless of our choice of ℓ, the only way to uniformly decrease the L-2 norms of
the derivatives of the adaptive terms is by decreasing γ. This leads to the classic
trade-off present in adaptive control. One can reduce the high frequency oscillations
in the adaptive parameters by choosing a small γ, this however leads to poor reference
model tracking. This can be seen by expanding the bound on ‖e(t)‖L∞ in (3.8),

‖e(t)‖2L∞
≤ e(0)2 +

1

γ
˜̄θ(0)T ˜̄θ(0). (3.22)

If one chooses a small γ, then poor state tracking performance can occur, as the
second term in (3.22) is large for small γ. Therefore it still remains to be seen as
to how and when CRM leads to an advantage over ORM. As shown in the following
subsection and subsequent section, this can be demonstrated through the introduction
of projection in the adaptive law and a suitable choice of ℓ and γ. This in turn will
allow the reduction of high frequency oscillations.

3.2.3 Effect of Projection Algorithm

It is well known that some sort of modification of the adaptive law is needed to ensure
boundedness in the presence of perturbations such as disturbances or unmodeled
dynamics. We use a projection algorithm [67] with CRMs as

˙̄θ = ProjΩ(−γsgn(kp)eφ, θ̄) (3.23)

where θ̄(0), θ̄∗ ∈ Ω, with Ω ∈ R
2 a closed and convex set centered at the origin whose

size is dependent on a known bound of the parameter uncertainty θ̄∗. Equation (3.23)
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assures that θ̄(t) ∈ Ω ∀ t ≥ 0 [67]. The following definition will be used throughout:

Θmax , sup
θ̄,θ̄∗∈Ω

‖ ˜̄θ‖. (3.24)

Beginning with the already proven fact that V̇ ≤ (am + ℓ)e2, we note that the
following bound holds as well with the use of (3.23):

V̇ (t) ≤ −2|am + ℓ|V +
|am + ℓ|

γ
|kp|Θ2

max. (3.25)

Using Gronwall-Bellman [6] it can be deduced that

V (t) ≤
(

V (0)− |kp|
2γ

Θ2
max

)

e−2|am+ℓ|t +
|kp|
2γ

Θ2
max (3.26)

which can be further simplified as

V (t) ≤ 1

2
‖e(0)‖2e−2|am+ℓ|t +

|kp|
2γ

Θ2
max (3.27)

which informs the following exponential bound on e(t):

‖e(t)‖2 ≤ ‖e(0)‖2e−2|am+ℓ|t +
|kp|
γ

Θ2
max. (3.28)

The discussions in Section 3.2 show that with a projection algorithm, the CRM
adaptive system is not only stable but satisfies the transient bounds in (3.9), (3.15),
(3.18), (3.21), (3.27) and (3.28). The bounds in (3.15), (3.18) and (3.21) leave much
to be desired however, as it is not clear how the free design parameters ℓ and γ can be
chosen so that the bounds on ‖k̇‖L2 and ‖θ̇‖L2 can be systematically reduced while
simultaneously controlling the peaking in the reference model output xm. Using the
bounds in (3.27) and (3.28), in the following section, we propose an “optimal” CRM
design that does not suffer from the peaking phenomena, and show how the bounds in
(3.15), (3.18) and (3.21) can be further improved. We also make a direct connection
between the L-2 norm of the derivative of a signal, and the frequency and amplitude
of oscillation in that signal.

3.3 Bounded Peaking with CRM adaptive systems

3.3.1 Bounds on xm

We first show that the peaking that ‖xm(t)‖ was shown to exhibit in Section II-A can
be reduced through the use of a projection algorithm in the update law as in (3.23),
and a suitable choice of γ and ℓ. For this purpose we derive two different bounds,
one over the time interval [0, t1] and another over [t1,∞).
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Lemma 3.2. Consider the adaptive system with the plant in (3.1), with the controller
defined by (3.4), the update law in (3.23) with the reference model as in (3.2). For
all δ > 1 and ǫ > 0, there exists a time t1 ≥ 0 such that

‖xp(t)‖ ≤ δ‖xp(0)‖+ ǫ‖r(t)‖L∞

‖xm(t)‖ ≤ δ‖xp(0)‖+ ǫ‖r(t)‖L∞ +
√

2V (0)
(3.29)

∀ 0 ≤ t ≤ t1.

Proof. The plant in (3.1) is described by the dynamical equation

ẋp = (am + kpθ̃)xp + kpk̃r

where we note that (am + kpθ̃) can be positive. This leads to the inequality

‖xp(t)‖ ≤‖xp(0)‖e(am+|kp|Θmax)t +

∫ t

0

e(am+|kp|Θmax)(t−τ) |kp|Θmax‖r(τ)‖L∞dτ.

For any δ >1 and any ǫ > 0, it follows from the above inequality that a t1 exists such
that e(am+|kp|Θmax)t ≤ δ and

∫ t

0
e(am+|kp|Θmax)(t−τ) |kp|Θmaxdτ ≤ ǫ, ∀ t ≤ t1. The bound

on xm(t) follows from the fact that ‖xm‖ ≤ ‖xp‖+ ‖e‖ and from (3.8).

Remark 3.3. The above lemma illustrates the fact that if t1 is small, the plant
and reference model states cannot move arbitrarily far from their respective initial
conditions over [0, t1].

Lemma 3.3. For any a ≥ 0 ∃ an x∗ < 0 such that for all x ≤ x∗ < 0

exa ≤ |x|−
1
2 ∀ x ≤ x∗ < 0.

Proof. Exponential functions with negative exponent decay faster than any fractional
polynomial.

We now derive bounds on xm(t) when t ≥ t1. For this purpose a tighter bound on
the error e than that in (3.9) is first derived.

Lemma 3.4. Consider the adaptive system with the plant in (3.1), with the controller
defined by (3.4), the update law in (3.23) with the reference model as in (3.2). Given
a time t1 ≥ 0, there exists an ℓ∗ s.t.

√
∫ ∞

t1

‖e‖2dτ ≤ ‖e(0)‖√
2 |am + ℓ|

+

√

|kp|
2γ |am + ℓ|Θmax (3.30)

for all ℓ ≤ ℓ∗.

Proof. Substitution of t = t1 in (3.27) and using the fact that V̇ (t) = −|am + ℓ|‖e(t)‖2,
the following bound is obtained:

∫ ∞

t1

‖e‖2dτ ≤‖e(0)‖
2e−2|am+ℓ|t1

2 |am + ℓ| +
|kp|

2γ |am + ℓ|Θ
2
max. (3.31)
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Noting that
√
e−2|am+ℓ|t1 = e−|am+ℓ|t1 , and using the result from Lemma 3.3, we know

that there exists an ℓ∗ such that for all ℓ < ℓ∗, e(am+ℓ)t1 ≤ |am + ℓ|−1/2. This leads to
(3.30).

Similar to the definition of ∆xm(t) in Section II.B we define

∆x̄m(t) , |ℓ|
∫ t

t1

e−|am|(t−τ)‖e(τ)‖dτ

for all t ≥ t1. Choosing ℓ ≤ ℓ∗ with ℓ∗ defined in Lemma 3.4, using the bound on e(t)
in (3.30) and the Cauchy Schwartz inequality, we have that

‖∆x̄m(t)‖L∞ ≤ b4 + b5

( |ℓ|
γ

)1/2

∀t ≥ t1

where b4 =
‖e(0)‖

2
√

|am|
and b5 =

√
|kp|Θmax

2
√

|am|
. Choosing γ = |ℓ| the bound above becomes

‖∆x̄m(t)‖L∞ ≤ b4 + b5 t ≥ t1. (3.32)

Comparing the bound in (3.32) to the bound in (3.14), we note that the peaking
exponent (Definition 1) has been reduced from 1/2 to 0 for the upper bound on
the convolution integral of interest. Thus, as |ℓ| is increased, the term ∆x̄m(t) will
not exhibit peaking. This result allows us to obtain a bound on the closed-loop
reference model xm(t) that does not increase with increasing |ℓ|. This is explored in
the following theorem and subsequent remark in detail.

Theorem 3.3. Consider the adaptive system with the plant in (3.1), the controller
defined by (3.4), the update law in (3.23) with the reference model as in (3.2), with
t1 chosen as in Lemma 3.2 and ℓ ≤ ℓ∗ where ℓ∗ satisfies (3.30). It can then be shown
that

‖xm(t)‖2t≥t1
≤ c1(t) +

‖e(0)‖2
|am|

+
|ℓ| |kp|Θ2

max

γ |am|
(3.33)

where
c1 , 2

(
‖xom‖L∞ + ‖xm(t1)‖e−|am|(t−t1)

)2
.

Proof. The solution of (3.2) for t ≥ t1 is given by

‖xm(t)‖ ≤‖xom‖L∞ + ‖xm(t1)‖e−|am|(t−t1) + |ℓ|
∫ ∞

t1

e−|am|(t−τ)‖e(τ)‖dτ.

Using the Cauchy Schwartz Inequality and (3.30) from Lemma 3.4, we have that

‖xm(t)‖t≥t1 ≤‖xom‖L∞ + ‖ xm(t1)‖e−|am|(t−t1)

+
|ℓ|

√

2 |am|

(

‖e(0)‖√
2 |am + ℓ|

+

√

|kp|Θmax
√

2γ |am + ℓ|

)

,
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for all ℓ < ℓ∗. Squaring leads to (3.33).

Corollary 3.1. Following the same assumptions as Theorem 3.3, with γ = |ℓ|

‖xm(t)‖2t≤t1 ≤ 2(δ‖xp(0)‖+ ǫ‖r(t)‖L∞)2 + 4V (0) (3.34)

‖xm(t)‖2t≥t1
≤ c1(t) +

‖e(0)‖2
|am|

+
|kp|Θ2

max

|am|
(3.35)

Remark 3.4. Through the use of a projection algorithm in the adaptive law, the
exploitation of finite time stability of the plant in Lemma 1, and through the use
of the extra degree of freedom in the choice of ℓ, we have obtained a bound for
‖xm(t)‖2t≤t1

in (3.34) which is only a function of the initial condition of the plant and
controller. Similarly for ‖xm(t)‖2t≥t1 , we have derived a bound in (3.34) which is once
again a function of the initial condition of the plant and controller alone. The most
important point to note is that unlike (3.15), the bound on xm in (3.34) and (3.35)
is no longer proportional to ℓ in any power. This implies that even for large |ℓ|, an
appropriate choice of the adaptive tuning parameter γ can help reduce the peaking in
the reference model. This improvement was possible only through the introduction
of projection and the use of the Gronwall-Bellman inequality.

3.3.2 Bounds on parameter derivatives and oscillations

We now present the main result of this paper.

Theorem 3.4. The adaptive system with the plant in (3.1), the controller defined by
(3.4), the update law in (3.23) with the reference model as in (3.2), with t1 chosen as
in Lemma 3.2 and ℓ ≤ ℓ∗ where ℓ∗ is given in Lemma 3.4 and γ = |ℓ|, the following
bounds are satisfied for all γ ≥ 1:

∫ ∞

t1

‖k̇‖2dτ ≤
(
‖e(0)‖2 + |kp|Θ2

max

)
‖r(t)‖L∞

∫ ∞

t1

‖θ̇‖2dτ ≤
(
‖e(0)‖2 + |kp|Θ2

max

)
c2 +

(
‖e(0)‖2 + |kp|Θ2

max

)

(

c3
√

|ℓ|
+
c4
γ

) (3.36)

where c2, c3, c4 are independent of γ and ℓ, and are only a function of the initial
conditions of the system and the fixed design parameters.

Proof. Using (3.17) and (3.30), together with the fact that γ = |ℓ|, we obtain the first
inequality in (3.36). To prove the bound on θ̇ we start with (3.19), and note that

γ2
∫ ∞

t1

e(τ)2dτ ≤
(
‖e(0)‖2 + |kp|Θ2

max

)
. (3.37)

Using the bound in (3.37) and setting c2 = ‖xm(t)‖2t≥t1
from (3.33) we have the first

term in the bound on θ̇ in (3.36).
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We note from (3.28) and Lemma 3.3 that

‖e(t)‖ ≤ e(0)2
√

|am + ℓ|
+
|kp|Θmax

γ
∀t ≥ t1.

This together with (3.37) leads to the second term in the bound on θ̇ in (3.36).
Therefore, c2, c3 and c4 are independent of γ and ℓ.

Remark 3.5. From the above Theorem it is clear that if γ and |ℓ| are increased
while holding γ = |ℓ|, the L-2 norms of the derivatives of the adaptive parameters
can be decreased significantly. Two important points should be noted. One is that the
bounds in (3.36) are much tighter than those in (3.21), with terms of the form γ2/ℓ no
longer present. Finally, from Theorem 3.2, it follows that the improved L-2 bounds
in (3.36) result in a reduced high frequency oscillations in the adaptive parameters.

3.3.3 Simulation Studies for CRM

Simulation studies are now presented to illustrate the improved transient behavior of
the adaptive parameters and the peaking that can occur in the reference model. For
these examples the reference system is chosen such that am = −1, km = 1 and the
plant is chosen as ap = 1, kp = 2. The adaptive parameters are initialized to be zero.
Figures 1 through 3 are for an ORM adaptive system with the tuning gain chosen
as γ ∈ {1, 10, 100}. Walking through Figures 1 through 3 it clear that as the tuning
gain is increased the plant tracks the reference model more closely, at the cost of
increased oscillations in the adaptive parameters. Then the CRM is introduced and
the resulting responses are shown in Figures 4 through 6, for γ = 100, and ℓ=-10, -100,
and -1000 respectively. First, it should be noted that no high frequency oscillations
are present in these cases, and the trajectories are smooth, which corroborates the
inequalities (3.36) in Theorem 3.4. As the ratio |ℓ| /γ increases, as illustrated in
Figures 4 through 6, the reference trajectory xm starts to deviate from the open-
loop reference xom, with the peaking phenomenon clearly visible in Figure 6 where
|ℓ| /γ = 10. This corroborates our results in section 3.3 as well.

3.4 CRM for States Accessible Control

In this section we show that the same bounds shown previously easily extend to the
states accessible case. Consider the n dimensional linear system

ẋp = Axp +BΛu (3.38)

with B known, A,Λ are unknown. An a priori upper bound on Λ is known and
therefore we define

λ̄ , max
i
λi(Λ),
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Figure 3-1: Trajectories of the ORM adaptive system γ = 1.
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Figure 3-2: Trajectories of the ORM adaptive system γ = 10.
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Figure 3-3: Trajectories of the ORM adaptive system γ = 100.
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Figure 3-4: Trajectories of the CRM adaptive system γ = 100, ℓ = −10.
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Figure 3-5: Trajectories of the CRM adaptive system γ = 100, ℓ = −100.
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Figure 3-6: Trajectories of the CRM adaptive system γ = 100, ℓ = −1000.
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where λi denotes the i-th eigenvalue. The reference model is defined as

ẋm = Amxm +Br − Le. (3.39)

The control input is defined as

u = Θxp +Kr. (3.40)

It is assumed that there exists Θ∗ and K∗ such that

A+BΛΘ∗ = Am

ΛK∗ = I

and the parameter errors are then defined as Θ̃ = Θ−Θ∗ and K̃ = K−K∗. Defining
the error as e = xp − xm, the update law for the adaptive parameters is then

Θ̇ = ProjΩ1
(−ΓBTPexTp ,Θ)

K̇ = ProjΩ2
(−ΓBTPerT , K)

(3.41)

where P = P T > 0 is the solution to the Lyapunov equation (Am + L)TP + P (Am +
L) = −Q which exists for all Q = QT > 0. With a slight abuse of notation the
following definition is reused from the previous section,

sup
Θ,Θ∗∈Ω1

‖Θ̃‖F , Θmax and sup
K,K∗∈Ω2

‖K̃‖F , Kmax, (3.42)

where ‖·‖F denotes the Frobenius norm. The adaptive system can be shown to be
stable by using the following Lyapunov candidate,

V (t) = eTPe+ Tr(ΛΘ̃TΓ−1Θ̃) + Tr(ΛK̃TΓ−1K̃)

where after differentiating we have that V̇ ≤ −eTQe. We choose L and Γ in a special
form to ease the analysis in the following sections.

Assumption 3.1. The free design parameters are chosen as

Γ = γIn×n

L = −Am + gIn×n

(3.43)

where γ > 0 and g < 0.

Assumption 1 allows us to choose a P = 1/2In×n in the Lyapunov equation and
therefore Q = −gIn×n. Using these simplification the Lyapunov candidate derivative
can be bounded as

V̇ (t) ≤ − |g| ‖e(t)‖2, (3.44)
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and by direct integration we have

‖e(t)‖2 ≤ V (0)

|g| . (3.45)

Using the Gronwall-Bellman Lemma as was previously used in (3.25)-(3.28), we can
deduce that

V (t) ≤ 1

2
‖e(0)‖2e−2|g|t +

λ̄

γ

(
Θ2

max +K2
max

)
. (3.46)

Lemma 3.5. For all ǫ > 0 and δ > 1 there exists a t2 such that the plant and
reference model in (3.38) and (3.39) respectively satisfy the bounds in (3.29) with t2
replacing t1.

Lemma 3.6. Consider the adaptive system with the plant in (3.38), the controller
in (3.40), the update law in (3.41), the reference model as in (3.39) and Γ and L
parameterized as in Assumption 3.1. Given a time t2 ≥ 0, there exists a g∗ s.t.

√
∫ ∞

t2

‖e‖2dτ ≤ ‖e(0)‖√
2 |g|

+

√

λ̄(Θ2
max

+K2
max

)

γ |g| (3.47)

for all g ≤ g∗.

Proof. From (3.46) we have that

V (t2) ≤
1

2
‖e(0)‖2e−2|g|t2 +

λ̄

γ

(
Θ2

max +K2
max

)
.

Using the above bound and integrating −V̇ in (3.46) from t2 to ∞ and dividing by
|g| leads to

∫ ∞

t2

‖e‖2dτ ≤ ‖e(0)‖
2e−2|g|t2

2 |g| +
λ̄

γ |g|
(
Θ2

max +K2
max

)
(3.48)

Taking the square root, noting that
√
e−2|g|t2 = e−|g|t2 , and using the result from

Lemma 3.3, we know that there exists an g∗ such that for all g < g∗, e−|g|t2 ≤
|g|−1/2.

Theorem 3.5. Consider the adaptive system with the plant in (3.38), the controller
in (3.40), the update law in (3.41), the reference model as in (3.39), Γ and L param-
eterized as in Assumption 3.1, with t2 chosen as in Lemma 3.5 and g ≤ g∗ where g∗

is given in Lemma 3.6. It can be shown that

‖xm(t)‖2t≥t2
≤ c5(t) + 2

(‖Am‖2
|g|2

+ 1

)
a1
a2
‖e(0)‖2

+ 4λ̄

(‖Am‖2
γ |g|2

+
|g|
γ

)
a1
a2

(
Θ2

max
+K2

max

)
(3.49)

55



where

c5 , 2
(
‖xom‖L∞ + ‖xm(t2)‖a1e−a2(t−t2)

)2

eAmt ≤ a1e
a2t

with a1, a2 > 0.

Proof. The existence of a1, a2 > 0 such that eAmt ≤ a1e
−a2t follows from the fact that

Am is Hurwtiz [57]. Consider the dynamical system in (3.39) for t ≥ t2,

‖xm(t)‖t≥t2 ≤‖xom‖L∞ + ‖xm(t1)‖a1e−a2(t−t1)

+ ‖L‖a1
∫ ∞

t2

e−a2(t−τ)‖e(τ)‖dτ.

Using Cauchy Schwartz along with (3.47) in Lemma 3.6 we have that

‖xm(t)‖t≥t2 ≤‖xom‖L∞ + ‖ xm(t2)‖e−|am|(t−t1)

+
‖L‖√a1√

2a2




‖e(0)‖√
2 |g|

+

√

λ̄(Θ2
max +K2

max)

γ |g|



 .

Squaring and using the fact that L = −Am + gIn×n and thus ‖L‖ ≤ ‖Am‖ + g we
have that

‖xm(t)‖2t≥t2 ≤ c5(t) +
(‖Am‖+ g)2

|g|2
a1
a2
‖e(0)‖2

+
2(‖Am‖+ g)2λ̄

γ |g|
a1
a2

(
Θ2

max +K2
max

)
.

Inequality (3.49) follows since (‖Am‖+ |g|)2 ≤ 2‖Am‖2 + 2 |g|2.

Remark 3.6. Just as in the scalar case, we have derived a bound for ‖xm(t)‖2t≥t2

which is once again a function of the initial condition of the plant and controller,
but also dependent on a component which is proportional to |g|/γ. Therefore, by

choosing |g|
γ
= 1 with γ > 0 we can have bounded peaking in the reference model.

Theorem 3.6. The adaptive system with the plant in (3.38), the controller in (3.40),
the update law in (3.41), the reference model as in (3.39), Γ and L parameterized
as in Assumption 3.1, with t2 chosen as in Lemma 3.5, g ≤ g∗ where g∗ is given in
Lemma 3.6 and γ chosen such that γ = |g| the following bounds are satisfied for all
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γ ≥ 1:

∫ ∞

t2

‖K̇‖2dτ ≤‖B‖
(
‖e(0)‖2 +K2

max
+Θ2

max

)
‖r(t)‖L∞

∫ ∞

t2

‖Θ̇‖2dτ ≤‖B‖
(
‖e(0)‖2 +Θ2

max
+K2

max

)
·

(

c6 +
c7
g2

+
c8
√

|g|
+
c9
γ

)

(3.50)

where c6, c7, c8, c9 are independent of γ and g, and are only a function of the initial
conditions of the system and the fixed design parameters.

Proof. The proof follows the same steps as used to derive the bounds in Theorem
3.4.

Remark 3.7. It should be noted that if γ and |g| are increased while holding γ =
|g|, the L-2 norms of the derivatives of the adaptive parameters can be decreased
significantly.

Remark 3.8. The similarity of the bounds in Theorem 3.6 to those in Theorem 3.4
implies that the same bounds on frequencies and corresponding amplitudes of the
overall adaptive systems as in Theorem 3.2 hold here in the higher-order plant as
well.

We note that robustness issues have not been addressed with the CRM architecture
in this work. However, recent results in [29, 30, 53, 54] have shown that adaptive
systems do have a time-delay margin and robustness to unmodeled dynamics when
projection is used in the update law. While we expect similar results to hold with
CRM as well, a detailed investigation of the same as well as comparisons of their
robustness properties to their ORM counterparts are topics for further research.

3.5 CRM Composite Control with Observer Feed-

back

In this section, we show that the tools introduced to demonstrate smooth transient
in CRM-adaptive systems can be used to analyze CMRAC systems introduced in
[16,43,72]. As mentioned in the introduction, these systems were observed to exhibit
smooth transient response, and yet no analytical explanations have been provided
until now for this behavior. Our focus is on first-order plants for the sake of simplicity.
Similar to Section 3.4, all results derived here can be directly extended to higher order
plants whose states are accessible.

The CMRAC system that we discuss in this paper differs from that in [16] and
includes an observer whose state is fed back for control rather than the plant state.
As mentioned in the introduction, we denote this class of systems as CMRAC-CO

57



and is described by the plant in (3.1), the reference model in (3.2), an observer as

ẋo(t) = ℓ(xo − xp) + (am − kpθ̂)xo(t) + kpu(t), (3.51)

and the control input is given by

u = θxo + k∗r. (3.52)

In the above kp is assumed to be known for ease of exposition. The feedback gain ℓ
is chosen so that

gθ , am + ℓ + |kpθ∗| < 0. (3.53)

Defining em = xp − xm and eo = xo − xp, the error dynamics are now given by

ėm(t) = (am + ℓ)em + kpθ̃xo + kpθ
∗eo

ėo(t) = (am + ℓ)eo − kpθ̄xo.
(3.54)

where θ̃ = θ − θ∗ and θ̄ = θ̂ − θ∗ with θ∗ satisfying ap + kpθ
∗ = am and kpk

∗ = km.
The update laws for the adaptive parameters are then defined with the update law

θ̇ = ProjΩ(−γsgn(kp)emxo, θ)− ηǫθ
˙̂
θ = ProjΩ(γsgn(kp)eoxo, θ̂) + ηǫθ

ǫθ = θ − θ̂
(3.55)

where γ, η > 0 are free design parameters. As before we define the bounded set

Θmax , max

{

sup
θ,θ∗∈Ω

‖θ̃‖, sup
θ̂,θ∗∈Ω

‖θ̄‖
}

. (3.56)

We first establish stability and then discuss the improved transient response.

3.5.1 Stability

The stability of the CMRAC-CO adaptive system given by (3.1), (3.2), (3.51)-(3.55)
can be verified with the following Lyapunov candidate

V (t) =
1

2

(

e2m + e2o +
|kp|
γ
θ̃2 +

|kp|
γ
θ̄2
)

(3.57)

which has the following derivative

V̇ ≤ gθe
2
m + gθe

2
o −

η |kp|
γ

ǫ2θ. (3.58)

Boundedness of all signals in the system follows since gθ < 0. From the integration of
(3.58) we have {em, eo, ǫθ} ∈ L∞ ∩ L2 and thus limt→∞{em, eo, ǫθ} = {0, 0, 0}. Using
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the Gronwall-Bellman Lemma as was previously used in (3.25)-(3.28), we can deduce
that

V (t) ≤ 1

2

(
em(0)

2 + eo(0)
2
)
e−2|gθ|t +

|kp|
γ
θ2max. (3.59)

It should be noted that the presence of a non-zero ℓ is crucial for stability, as gθ
cannot be guaranteed to be negative if ℓ = 0.

3.5.2 Transient performance of CMRAC-CO

Similar to Sections II and III we divide the timeline into [0, t3] and [t3,∞), where t3
is arbitrarily small. We first derive bounds for the system states over the initial [0, t3]
in Lemma 3.7, bounds for the tracking, observer, parameter estimation errors em, eo
and ǫθ over [t3,∞) in Lemma 3.8, bounds for xo over [t3,∞) in Theorem 3.7, and

finally bounds for the parameter derivatives θ̇ and
˙̂
θ in Theorem 3.8.

Lemma 3.7. Consider the CMRAC-CO adaptive system with the plant in (3.1), with
the controller defined by (3.52), the update law in (3.55) and with the reference model
as in (3.2). For all δ > 1 and ǫ > 0, there exists a time t3 ≥ 0 such that

‖xp(t)‖ ≤ δ‖xp(0)‖+ ǫ
(

‖r(t)‖L∞ +
√

2V (0)
)

‖xo(t)‖ ≤ δ‖xp(0)‖+ ǫ‖r(t)‖L∞ + (1 + ǫ)
√

2V (0)
(3.60)

∀ 0 ≤ t ≤ t3.

Proof. The plant in (3.2) with the controller in (3.52) can be represented as

ẋp = (ap + kpθ)xp + kp (r + θeo)

where we note that (ap + kpθ) can be positive. This leads to the inequality

‖xp(t)‖ ≤‖xp(0)‖e(ap+|kp|Θmax)t +

∫ t

0

e(ap+|kp|Θmax)(t−τ)·

|kp| (Θmax‖r(τ)‖+Θmax‖eo(τ)‖) dτ.

For any δ >1 and any ǫ > 0, it follows from the above inequality that a t3 exists such
that e(ap+|kp|Θmax)t ≤ δ and

∫ t

0
e(ap+|kp|Θmax)(t−τ) |kp|Θmaxdτ ≤ ǫ, 0 ≤ t ≤ t3 given δ > 0

and ǫ > 0. From the structure of the Lyapunov candidate in (3.57) and the fact that
V̇ ≤ 0 we have that ‖eo(t)‖L∞ ≤

√

2V (0). The bound on xo(t) follows from the fact
that ‖xo‖ ≤ ‖xp‖+ ‖eo‖.

Lemma 3.8. Consider the adaptive system with the plant in (3.1), the controller in
(3.52), the update law in (3.55), and the reference model as in (3.2). Given a time
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t2 ≥ 0, there exists a g∗θ s.t.

√
∫ ∞

t3

em2dτ ≤
√

em(0)2 + eo(0)2√
2 |gθ|

+

√

|kp|
γ |gθ|

Θmax

√
∫ ∞

t3

eo2dτ ≤
√

em(0)2 + eo(0)2√
2 |gθ|

+

√

|kp|
γ |gθ|

Θmax

√
∫ ∞

t3

ǫθ2dτ ≤
√
γ
√

em(0)2 + eo(0)2
√

2η |kp| |gθ|
+

√
1

η
Θmax

(3.61)

for all gθ ≤ g∗θ .

Theorem 3.7. Consider the adaptive system with the plant in (3.1), the controller
in (3.52), the update law in (3.55), the reference model as in (3.2), with t3 chosen as
in Lemma 3.7 and gθ ≤ g∗θ where g∗θ is given in Lemma 3.8. It can be shown that

‖xo(t)‖2t≥t3 ≤ c10(t) +
|ℓ|2

|gθ|2
2
√
a4
(
em(0)

2 + eo(0)
2
)

+
|ℓ|2 |kp|
γ |gθ|

4a4Θ
2
max

(3.62)

where

c10 , 2
(
a3 |kp| ‖r‖L∞ + ‖xo(t3)‖eaθ(t−t3)

)2

aθ , am + kpǫθ

and
∫ ∞

t3

eaθ(t−τ)dτ ≤ a3
∫ ∞

t3

e2aθ(t−τ)dτ ≤ a4

with 0 ≤ ai <∞, i ∈ {3, 4}.

Proof. Given that limt→∞ ǫθ(t) = 0 we have from (3.53) that limt→∞ aθ = am. Thus
limt→∞ eaθt = 0. Therefore, a3, a4 <∞. Consider the dynamical system in (3.51) for
t ≥ t3.

‖xo(t)‖t≥t3 ≤‖xo(t3)‖eaθ(t−t3) +

∫ ∞

t3

eaθ(t−τ) (|ℓ| ‖eo(τ)‖+ |kp| ‖r(τ)‖) dτ.
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Using Cauchy Schwartz and Lemma 3.8 as before we have

‖xo(t)‖t≥t3 ≤a3 |kp| ‖r‖L∞ + ‖ xo(t3)‖e−|am|(t−t3) + |ℓ|√a4
√

em(0)2 + eo(0)2√
2 |gθ|

+ |ℓ|√a4a4

√

|kp|
γ |gθ|

Θmax.

Squaring and using the inequality (a+ b)2 ≤ 2a2 + 2b2 twice, we have our result.

Corollary 3.2. For the system presented in Theorem 3.7 setting γ = |gθ| and taking
the limit as ℓ→ −∞ the following bound holds for xo(t)

lim
ℓ→−∞

‖xo(t)‖2t≥t3 ≤ c10(t) + 2
√
a4
(
em(0)

2 + eo(0)
2
)
+ |kp| 4a4Θ2

max
. (3.63)

Theorem 3.8. The adaptive system with the plant in (3.1), the controller defined by
(3.52), the update law in (3.55) with the reference model as in (3.2), with t3 chosen
as in Lemma 3.7 and gθ ≤ g∗θ where g∗θ is given in Lemma 3.8 and γ chosen such that
γ = |gθ| the following bounds are satisfied for all γ ≥ 1:

∫ ∞

t3

‖θ̇‖2dτ ≤ α and

∫ ∞

t3

‖ ˙̂θ‖2dτ ≤ α (3.64)

with

α ,

(
ℓ2

g2θ
+

η

|kp|

)
(
em(0)

2 + eo(0)
2 + |kp|Θ2

max

)
c11

where c11 is independent of γ and gθ, and is only a function of the initial conditions
of the system and the fixed design parameters.

Remark 3.9. Note that

lim
ℓ→−∞

ℓ2

g2θ
= 1.

Thus for large |ℓ| the truncated L-2 norm of θ̇ is simply a function of the initial
conditions of the system and the tuning parameter η.

Remark 3.10. The similarity of the bounds in Theorem 3.8 to those in Theorem
3.4 implies that the same bounds on frequencies and corresponding amplitudes of the
overall adaptive systems as in Theorem 3.2 hold here in the CMRAC-CO case as well.

3.5.3 Robustness of CMRAC–CO to Noise

As mentioned earlier, the benefits of the CMRAC–CO is the use of the observer
state xo rather than the actual plant state x. This implies that the effect of any
measurement noise on system performance can be reduced. This is explored in this
section and Section 3.5.4.
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Suppose that the actual plant dynamics is modified from (3.1) as

ẋa(t) = apxa(t) + kpu(t), xp(t) = xa(t) + n(t) (3.65)

where n(t) represents measurement noise. For ease of exposition, we assume that
n(t) ∈ C1.

This leads to a set of modified error equations

ėm(t) =(am + ℓ)em + kpθ̃(t)xo + kpθ
∗eo + ξ(t)

ėo(t) =(am + ℓ− kpθ∗)eo − kpθ̄(t)xo − ξ(t)
(3.66)

where
ξ(t) , η̇(t)− apη(t) (3.67)

Theorem 3.9. The adaptive system with the plant in (3.65), the controller defined
by (3.52), the update law in (3.55) with the reference model as in (3.2), and ℓ chosen
such that am + ℓ+ 2 |kp| |θ∗| < 0, all trajectories are bounded and

V (t) ≤1
2

(
em(0)

2 + eo(0)
2
)
e−2|gn|t

+
|kp|
γ

Θ2
max

+
1

4 |gn|2
‖ξ(t)‖2L∞

.
(3.68)

where
gn , am + ℓ + 2 |kp| |θ∗| . (3.69)

Proof. Taking the time derivative of V in (3.57) results in

V̇ ≤gn
(
‖em‖2 + ‖eo‖2

)
− |kp|

η

γ
ǫ2θ

+ ‖ξ(t)‖‖em(t)‖+ ‖ξ(t)‖‖eo(t)‖.
(3.70)

completing the square in ‖em‖‖n‖ and ‖eo‖‖n‖

V̇ ≤− |gn| /2
(
‖em‖2 + ‖eo‖2

)
− |kp|

η

γ
ǫ2θ

− |gn| /2 (‖em‖ − 1/ |gn| ‖ξ(t)‖)2

− |gn| /2 (‖eo‖ − 1/ |gn| ‖ξ(t)‖)2

+ 1/(4 |gn|)‖ξ(t)‖2.

Neglecting the negative terms in lines 2 and 3 from above and the term involving ǫθ
we have that

V̇ ≤ − |gn| /2
(
‖em‖2 + ‖eo‖2

)
+ 1/(4 |gn|)‖ξ(t)‖2,

and in terms of V gives us

V̇ ≤ − |gn|V +
1

2

|kp| |gn|
γ

(

θ̃2 + θ̄2
)

+
1

4 |gn|
‖ξ(t)‖2.
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Using the Gronwall-Bellman Lemma and substitution of V (t) leads to the bound in
(3.68).

3.5.4 Simulation Study

For this study a scalar system in the presence of noise is to be controlled with dynamics
as presented in (3.65), where n(t) is a deterministic signal used to represent sensor
noise. n(t) is generated from a Gausian distribution with variance 1 and covariance
0.01, deterministically sampled using a fixed seed at 100 Hz, and then passed through
a saturation function with upper and lower bounds of 0.1 and -0.1 respectively. For
the CMRAC-CO systems the reference model is chosen as (3.2) with the rest of the
controller described by (3.51)-(3.55).

The CMRAC system used for comparison is identical to that in [16]. For CMRAC
the reference dynamics are now chosen as xom in (3.3), the observer is the same as
CMRAC-CO (3.51).

Further differences arise with the control law being chosen as

u = θxp + k∗r

The open-loop error eo = xp − xom updates the direct adaptive component, with the

regressor becoming xp instead of xo for both θ and θ̂ update laws:

θ̇ = ProjΩ(−γsgn(kp)eomxp, θ)− ηǫθ
˙̂
θ = ProjΩ(γsgn(kp)eoxp, θ̂) + ηǫθ.

(3.71)

The complete CMRAC and CMRAC-CO systems are given in Table I with the design
parameters given in Table II.

Table 3.1: Test Case Equations

Paramater CMRAC CMRAC-CO
Reference Dynamics Equation (3.3) Equation (3.2)
Observer Dynamics Equation (3.51) Equation (3.51)
Reference Error eom = xp − xom em = xp − xm
Observer Error eo = xo − xp eo = xo − xp
Input u = θxp + r u = θxo + r
Update Laws Equation (3.71) Equation (3.55)

The simulations have two distinct regions of interest, with Region 1 denoting the
first 4 seconds, Region 2 denoting the 4 sec to 15 sec range. In Region 1, the adaptive
system is subjected to non–zero initial conditions in the state and the reference input
is zero. At t = 4 sec, the beginning of Region 2, a filtered step input is introduced.
Figures 3-7 and 3-8 illustrate the response of the CMRAC–CO adaptive system over
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Table 3.2: Simulation Parameters

Paramater Value
ap 1
kp 1
am -1
km 1
ℓ -10
γ 100
η 1

0 to 15 seconds, with xm, x, and em indicated in Figure 3-7, and u, ∆u/∆t, θ and
θ̂ indicated in Figure 3-8. The addition of sensor noise makes the output xp not
differentiable and therefore we use the discrete difference function ∆ to obtain the
discrete time derivative of the control input, where

∆u

∆t
,
u(ti+1)− u(ti)

ti+1 − ti
, ti+1 − ti = 0.01.

In both cases, the resulting performance is compared with the classical CMRAC
system. The first point that should be noted is a satisfactory behavior in the steady-
state of the CMRAC–CO adaptive controller. We note a significant difference between

0 5 10 15

0

0.5

1

 

 

0 5 10 15

0

0.5

1

0 5 10 15
−0.2

0

0.2

0.4

 

 

e
x

t

x
m

open–loop
closed–loop

eo: closed–loop

Figure 3-7: (top) reference model trajectories xm, (middle) state x, and (bottom)
model following e.
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Figure 3-8: (top) Control input u, (middle–top) discrete rate of change of control input
∆u/∆t, (middle–bottom) adaptive parameter θ(t) and (bottom) adaptive parameter
θ̂(t).

the responses of CMRAC–CO and CMRAC systems, which pertains to the use of
filtered regressors in CMRAC–CO. An examination of ∆u/∆t in Figure 3-8 clearly
illustrates the advantage of CMRAC–CO.

3.5.5 Comments on CMRAC and CMRAC–CO

As discussed in the Introduction, combining indirect and direct adaptive control has
always been observed to produce desirable transient response in adaptive control.
While the above analysis does not directly support the observed transient improve-
ments with CMRAC, we provide a few speculations below: The free design parameter
ℓ in the identifier is typically chosen to have eigenvalues faster than the plant that
is being controlled. Therefore the identification model following error ei converges
rapidly and θ̂(t) will have smooth transients. It can be argued that the desirable
transient properties of the identifier pass on to the direct component through the
tuning law, and in particular ǫθ.
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3.6 CRMs in other Adaptive Systems

While CRMs can be traced to [49] in the context of direct model reference adaptive
control, such a closed loop structure has always been present in, adaptive observers,
tuning function designs, and in a similar fashion in adaptive control of robots. These
are briefly described in the following sections.

3.6.1 Adaptive Backstepping with Tuning Functions

The control structure presented here is identical to that presented in [37, §4.3]. Con-
sider the unknown system

ẋ1 = x2 + ϕ1(x1)
T θ∗

ẋ1 = x3 + ϕ2(x1, x2)
T θ∗

...

ẋn−1 = xn + ϕn−1(x1, . . . , xn−1)
T θ∗

ẋn = β(x)u+ ϕn(x)
T θ∗

(3.72)

where θ∗ is an unknown column vector, β(x) is known and invertible, the ϕi are
known, x is the state vector of the scalar xi and the goal is to have y = x1 follow a
desired n times differentiable yr. The control law propped in [37] is of the form

u =
1

β(x)

(
αn + y(n)r

)
(3.73)

with an update law
θ̇ = ΓWz (3.74)

where Γ = ΓT > 0 is the adaptive tuning parameter, z is the transformed state error,
and W = τn(z, θ) with τi and the αi, 1 ≤ i ≤ n defined in (3.76) in the Appendix
along with the rest of the control design. The closed loop system reduces to

ż = Az(z, θ, t)z +W (z, θ, t)θ̃ (3.75)

where θ̃ = θ − θ∗ and

Az =









−c1 1 0 · · · 0
−1 −c2 1 + σ23 · · · σ2n

0 −1− σ23

. . .
. . .

...
...

...
. . .

. . . 1 + σn−1,n

0 −σ2n · · · −1− σn−1,n −cn








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where σik = −∂αi−1

∂θ
Γwk. The ci are free design parameters that arise in the definition

of the αi as defined below

zi =xi − y(i−1)
r − αi−1

αi =− zi−1 − cizi − wT
i θ +

i−1∑

k=1

(

∂αi−1

∂xk
+

∂αi−1

∂y
(k−1)
r

y(k)r

)

+
∂αi−1

∂θ
Γτi +

i−1∑

k=2

∂αk−1

∂θ
Γwizk

τi =τi−1 + wizi

wi =ϕi −
i−1∑

k=1

∂αi−1

∂xk
ϕk.

(3.76)

Notice that the −ci act in the same way as the ℓ in the simple adaptive system first
presented in the reference model in (3.2). They act to close the reference trajectories
with the plant state. The above system also results in similar L-2 norms for the z
error state. Consider the Lyapunov candidate

V (z(t), θ̃(t)) =
1

2
zT z +

1

2
θ̃TΓ−1θ̃ (3.77)

which results in a negative semidefinite derivative V̇ ≤ −c0‖z‖2 where c0 = min1≤i≤n (ci).
Thus we can integrate −V̇ to obtain the following bound on the L-2 norm of z

‖z(t)‖2L2
≤ V (0)

c0
. (3.78)

It is addressed in [37, §4.4.1] that while it may appear that increasing c0 uniformly
decreases the L-2 norm of z, choosing ci to be a large can result in large z(0). The
authors then provide a method for initializing the z dynamics so that z(0) = 0. We
have already discussed why this may not be possible in a real system.

3.6.2 Adaptive Control in Robotics

The control structure presented here is taken directly from [73, §9.2]. Consider the
dynamics of a rigid manipulator

H(q)q̈ + C(q, q̇) + g(q) = τ (3.79)

where q is the joint angle, and τ is the torque input. It is assumed that the system
can be parameterized as

Y (q, q̇, q̇r, q̈r)a = H(q)q̈r + C(q, q̇)q̇r + g(q) (3.80)
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where qr is a twice differentiable reference signal, Y is known and a is an unknown
vector. The control law is chosen as

τ = Y â− kds and ˙̂a = −ΓY T s. (3.81)

Then, defining the desired dynamics trajectory as qd, the reference dynamics of the
system are created by

q̇r = q̇d − λq̃ (3.82)

where q̃ = q − qd and
s = q̇ − q̇r = ˙̃q + λq̃. (3.83)

The stability of the above system can be verified with the following Lyapunov
candidate,

V =
1

2

(
sTHs+ ãTΓ−1ã

)
.

Differentiating and using the property that Ḣ = C + CT we have that

V̇ = −sTkds. (3.84)

We note that λ has a similar role in this control structure as the ℓ in the CRM. The
desired trajectory is qd (like xom in our examples), however the adaptive parameter is
updated by the composite variable s instead of directly adjusted by the true reference
error.

We now conjecture as to why closed-loop reference models have not been studied in
direct adaptive control until recently. In the two cases of nonlinear adaptive control,
closed reference trajectory errors are used to update the adaptive controller. This
is performed in the tuning function approach through the selection of the ci and
in the adaptive robot control example with λ and the creation of the composite
variable s. In both cases the stability of the system necessitates the introduction of
these variables. In contrast, in model reference adaptive control, stability is derived
from the inherent stability of the reference model and hence any addition of new
variables becomes superfluous. When no reference model is present, closing the loop
on the reference trajectory becomes necessary. With the recent focus on improving
transients in adaptive systems, CRM now has a role in MRAC. And as pointed out in
this chapter improved transients can result with CRM without introducing peaking
by choosing the ratio |ℓ| /γ carefully.

3.7 Conclusions

An increasingly oscillatory response with increasing adaptation gain is a transient
characteristic that is ubiquitous in all adaptive systems. Recently, a class of adaptive
systems has been investigated with closed-loop reference models where such oscillatory
response can be curtailed. In this paper, a detailed analysis of such adaptive systems is
carried out. It is shown through the derivation of analytical bounds on both states of
the adaptive system and on parameter derivatives that a phenomenon of peaking can
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occur with CRMs and that this phenomenon can be curtailed through a combination
of design and analysis, with the peaking exponent reduced from 0.5 to zero. In
particular, it is shown that bounds on the parameter derivatives can be related to
bounds on frequencies and corresponding amplitudes, thereby providing an analytical
basis for the transient performance. This guarantees that the resulting adaptive
systems have improved transient characteristics with reduced or no oscillations even
as the adaptation gains are increased. CRMs are shown to be implicitly present
in other problems including adaptive nonlinear control and a class of problems in
robotics.
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Chapter 4

Closed-loop Reference Models in
SISO Adaptive Control

4.1 Introduction

Recently a class of adaptive controllers with Closed–loop Reference Models (CRM)
for states accessible control has been proposed [21, 22, 24, 46]. The main feature of
this class is the inclusion of a Luenberger gain which feeds back the tracking error
into the reference model. Without the Luenberger gain the CRM reduces to the
Open–loop Reference Model (ORM) which is used in classical adaptive control [32,61].
Reference [46] introduces the concept of the CRM. In references [21,22,24] the stability
and robustness properties of the CRM based adaptive system, and more importantly,
an improved transient response were established for the case when state variables
are accessible. The transient response was quantified through the use of L2 norms
of the model following error as well as the rate of control input. In [21, 22, 24], it
was shown that the extra design freedom in the adaptive system in the form of the
Luenberger gain allowed this improvement. Others recent works on states accessible
CRM adaptive control can be found in [74, 75].

This chapter addresses the next step in the design of adaptive systems, which
is the case when only outputs are available for measurement rather than the entire
state. It is shown that even with output feedback, the resulting CRM–based adaptive
systems are first and foremost stable, and exhibit an improved transient response. As
in the case when states are accessible, it is shown that this improvement is possible
due to the suitable choice of the Luenberger gain. Unlike the approach in [45], the
classical model reference adaptive control structure is used here. Also, our focus here
is only on single-input single-output systems.

Using CRMs has two advantages over ORMs: 1) The reference model need not be
Strictly Positive Real (SPR) for CRM systems, and need only have the same number
of poles and zeros as its ORM counter part; 2) In CRM systems the reference model,
filters and Luenberger gain can be chosen so that the error transfer function used in
the update law is SPR and has arbitrarily fast poles and zeros. While the stability and
performance bounds are given for arbitrary reference models, we show in Examples 1
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and 2 how one can explicitly obtain error transfer functions of the form

k
sm−1 + b1s

m−2 + · · · bm−1

sm + a1sm−1 + · · ·+ am
, kW ′(s) (4.1)

where m is the relative degree of the plant to be controlled, s is the differential
operator, k is the high–frequency gain which is unknown but with known sign, and
the ai, bi are free to be choose so long as W ′(s) is SPR.

Another contribution of this work comes by way of the performance analysis tech-
nique used. When studying the stability of output feedback adaptive systems non–
minimal state space representations of the model following error are constructed so
that it can be shown that all signals in the system are bounded. After stability is
obtained, the performance analysis comes by way of studying the behavior of a mini-
mal representation of the adaptive system. The analysis is no longer hindered by the
unknown eigenvalues of the non–observable states in the error equation. It is precisely
this technique that allows us to extend the results of transient response analysis from
the states accessible case to the output feedback case, where we will show that we
have complete control over the location of the eigenvalues of the minimal system.

This chapter is organized as follows. Section II contains the notation. In Section
III the control problem is defined. Section IV contains the analysis of the ORM
(classical) relative degree 1 case. Section V and VI contain the analysis of the CRM
relative degree 1 and 2 cases respectively. Section VII analysis the arbitrary relative
degree case, and Section VIII closes with our conclusions.

4.2 Notation

All norms unless otherwise stated are the Euclidean norm and enduced Euclidean
norm. Let PC[0,∞) denote the set of all bounded piecewiese continuous signal.

Definition 4.1. Let x, y ∈ PC[0,∞). The big O–notation, y(t) = O[x(t)] is equivalent
to the existence of constants M1,M2 > 0 and t0 ∈ R+ such that |y(t)| ≤ M1 |x(t)| +
M1 ∀t ≥ t0.

Definition 4.2. Let x, y ∈ PC[0,∞). The small o–notaion, y(t) = o[x(t)] is equivalent
to the existence of constants β(t) ∈ PC[0,∞) and t0 ∈ R+ such that |y(t)| = β(t)x(t) ∀t ≥
t0 and limt→∞ β(t) = 0.

Definition 4.3. Let x, y ∈ PC[0,∞). If y(t) = O[x(t)] and x(t) = O[y(t)]. Then x and
y are said to be equivalent and denoted as x(t) ∼ y(t).

Definition 4.4. Let x, y ∈ PC[0,∞). x and y are said to grow at the same rate if
supt≤τ |x(τ)| ∼ supt≤τ |y(τ)|.
Definition 4.5. The prime notation is an operator that removes the high frequency
gain from a transfer function

W(s) , k
sm−1 + b1s

m−2 + · · · bm−1

sm + a1sm−1 + · · ·+ am
.
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so that

W ′(s) ,
W(s)

k
,

Just as was done in (4.1).

4.3 The Control Problem

Consider the Single Input Single Output (SISO) system of equations

y(t) = W (s)u(t) (4.2)

where u ∈ R is the input, y ∈ R is the measurable output, and s the differential
operator. The transfer function of the plant is parameterized as

W (s) , kp
Z(s)

P (s)
, kpW

′(s) (4.3)

where kp is a scalar, and Z(s) and P (s) are monic polynomials with deg(Z(s)) < deg(P (s)).
The following assumptions will be made throughout.

Assumption 4.1. W (s) is minimum phase.

Assumption 4.2. The sign of kp is known.

Assumption 4.3. The relative degree of W (s) is known.

4.4 Classical n∗ = 1 case (ORM n∗ = 1)

The goal is to design a control input u so that the output y in (4.2) tracks the output
ym of the reference system

ym(t) = Wm(s)r(t) , km
Zm(s)

Pm(s)
r(t) (4.4)

where km is a scalar and Zm(s) and Pm(s) are monic polynomials withWm(s) relative
degree 1. Just as before we use the prime notation from Definition 4.5

kmW
′
m(s) = Wm(s). (4.5)

Assumption 4.4. W ′
m(s) is Strictly Positive Real (SPR).

The previous assumption can be relaxed by using pre–filters in the adaptive law,
similar to what will be done in the relative degree 2 controller. This increased gener-
alization though is not necessary for our discussion.
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The structure of the adaptive controller is now presented:

ω̇1(t) = Λω1 + bλu(t) (4.6)

ω̇2(t) = Λω2 + bλy(t) (4.7)

ω(t) , [r(t), ωT
1 (t), y(t), ω

T
2 (t)]

T (4.8)

θ(t) , [k(t), θT1 (t), θ0(t), θ
T
2 (t)]

T (4.9)

u = θT (t)ω (4.10)

where Λ ∈ R
(n−1)×(n−1) is Hurwitzx, bλ ∈ R

n−1, k̂ ∈ R, ω1, ω2 ∈ R
n−1, and θ ∈ R

2n is
adaptive gain vector with k(t) ∈ R, θ1(t) ∈ Rn−1, θ2(t) ∈ Rn−1 and θ0(t) ∈ R. The
update law for the adaptive parameter is then defined as

θ̇(t) = −γsign(kp)eyω, (4.11)

where ey = y − ym.
Before stability is proved, a discussion on parameter matching is needed. Let

θc , [kc, θ
T
1c, θ0c, θ

T
2c]

T be a constant vector. When θ(t) = θc the forward loop and
feedback loop take the form

λ(s)

λ(s)− C(θc; s)
and

D(θc; s)

λ(s)
.

For simplicity we choose λ(s) = Zm(s), but note that this is not necessary and the
stability of the adaptive system will still hold. The closed loop system is now of the
form

y(t) = Wcl(θc; s)r(t)

with

Wcl(θc; s) ,
kckpZ(s)Zm(s)

(Zm(s)− C(θc; s))P (s)− kpZ(s)D(θc; s)
.

From the Bezout Identity, a θ∗T , [k∗, θ∗T1 , θ∗0, θ
∗T
2 ]T exists such thatWcl(θ

∗; s) = Wm(s).

Therefore,
y(t) = kpW

′
m(s)(φ

T (t)ω(t) + k∗r(t)) (4.12)

and
ey(t) = kpW

′
m(s)φ(t)ω(t), (4.13)

where φ(t) = θ(t)− θ∗(t) and k∗ = km/kp.

4.4.1 Stability for n∗ = 1

The plant in (4.3) can be represented by the unknown quadruple, (Ap, bp, cp, kp)

ẋ = Apx+ bpu; y = kpc
T
p x (4.14)
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where
kpc

T
p (sI −Ap)bp =W (s).

In general one does not need to keep the high frequency gain as a separate variable
when writing the transfer function dynamics in state space form. In the context
of adaptive control however, the sign of kp is important in proving stability and is
therefore always singled out from the rest of the dynamics. Using (4.14), the dynamics
in (4.12) can be represented as

ẋ = Amnx+ bmn(φ
T (t)ω + k∗r); y = kpc

T
mnx (4.15)

where

Amn =





Ap + bpθ
∗
0kpc

T
p bpθ

∗T
1 bpθ

∗T
2

bλθ
∗
0kpc

T
p Λ + bλθ

∗T
1 bλθ

∗T
2

bλkpc
T
p 0 Λ





bmn =





bp
bλ
0



 , cmn =





cp
0
0



 and x ,





xp
ω1

ω2





with the reference model having an equivalent non–minimal representation

ẋmn = Amnxmn + bmnk
∗r; ym = kpc

T
mnxmn

with the property that

kpc
T
mn(sI − Amn)bmn = kpW

′
m(s).

The non–minimal error vector is defined as emn = x− xmn and satisfies the following
dynamics

ėmn = Amnemn + bmnφ
Tω; ey = kpc

T
mnemn. (4.16)

Theorem 4.1. Following Assumptions 4.1-4.4, the plant in (4.2) with the reference
model in (4.4), controller in (4.10) and the update law in (4.11) are globally stable
with the model following error asymptotically converging to zero.

Proof. See [61, §5.3].

4.5 CRM n∗ = 1

In the case of ORM adaptive control, the reference model only receives one input
and is unaffected by the plant state trajectory. In order to facilitate the use of a
Luenbereger feedback gain ℓ into the reference model, the reference model is chosen
as

ẋm = Amxm + bmkmr + ℓ(y − ym), ym = cTmxm (4.17)
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where (Am, bm, c
T
m) is an m dimensional system in observer canonical form with

cTm = [0 . . . 0 1] and satisfying

cTm(sI − Am)bmkm = Wm(s).

ym(t) is now related to the reference command r(t) and model following error ey(t)
as

ym(t) = Wm(s)r(t) +Wℓ(s)(y(t)− ym(t)) (4.18)

where

Wℓ(s) , kℓ
Zℓ(s)

Pm(s)
, (4.19)

and kℓ ∈ R along with the m − 1 order monic polynomial Zℓ(s) are a function of ℓ
and free to choose. Subtracting (4.18) from (4.12) results in the following differential
relation

ey = kpW
′
e(s)φ

Tω (4.20)

where

W ′
e(s) ,

Zm(s)

Pm(s)− kℓZℓ(s)
. (4.21)

Lemma 4.1. An ℓ can be chosen such thatW ′
e(s) is SPR for any n∗ = 1 and minimum

phase transfer function W ′
m(s).

Proof. The product kℓZℓ(s) a polynomial of order n− 1 with n− 1 degrees of freedom
through ℓ. Pm(s) is a monic polynomial of degree n. Therefore, Pm(s)− kℓZℓ(s) is a
monic polynomial of order n with n−1 degrees of freedom determined by ℓ. Thus for
any Zm(s) the roots of W ′

e(s) can be placed freely in the closed left–half plane such
that W ′

e(s) is SPR.

Let
Ae = Amn +Gℓkpc

T
mn (4.22)

where G transforms xm to the controllable subspace in xmn, which always exist [34].
The non–minimal error dynamics therefore take the form

ėmn(t) = Aeemn(t) + bmnφ(t)ω(t). (4.23)

Remark 4.1. It is worth noting that in the construction of the minimal and non–
minimal systems the location of the gains kp and km switch from being located at the
input to the output. The non–minimal systems is never created and thus need not be
realized. Therefore, the influence of kp whether it be on the input or output matrix of
the state space does not matter. For the case of the minimal reference model in (4.17)
it is critical however that km appears at the input of the system. This is done on
purpose so that given the canonical form of cm the ℓ in (4.17) completely determines
the zeros and high frequency gain of Wℓ(s) in (4.19).

Theorem 4.2. Following Assumptions 4.1-4.3 and ℓ chosen as in Lemma 4.1, the
plant in (4.2) with the reference model in (4.17), controller in (4.10) and the up-
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date law in (4.11) are globally stable with the model following error asymptotically
converging to zero.

Proof. Given that W ′
e(s) is SPR, there exists a Pe = P T

e > 0 such that

AT
e Pe + PeAe = −Qe and Pebmn = cmn. (4.24)

where Qe = QT
e > 0. Thus

V = eTmnPeemn +
φTφ

γ |kp|
(4.25)

is a Lyapunov function with derivative V̇ = −eTmnQeemn. Barbalat Lemma ensures
the asymptotic convergence of emn to zero.

4.5.1 Performance

Now that we have proved stability we can return to a minimal representation of the
error dynamics in (4.20) which is

ėm = Aℓem + bmkpφ
Tω, ey = cTmem; (4.26)

where the all the eigen–values of Aℓ are the roots to Pm(s)− kℓZℓ(s), as can be seen
from (4.21). Recall the Anderson version of KY Lemma;

AT
ℓ P + PAℓ = −ggT − 2µP ; Pbm = cm (4.27)

where
µ , min

i
|λi(Aℓ)| , i = 1 to m. (4.28)

The following performance function

Vp = eTmPem +
φTφ

γ |kp|
(4.29)

has a time derivative
V̇p ≤ −2µeTmPem. (4.30)

From (4.30) it directly follows that

‖ey(t)‖2L2
≤ 1

2µ

(
λmax(P )

λmin(P )
‖e(0)‖2 + 1

γ |kp|
‖φ(0)‖2
λmin(P )

)

. (4.31)

Example 4.1. The transfer function W ′
e(s) must be SPR, therefore, the poles of

W ′
e(s) are limited by the location of its zeros. The order of Am however is free to

choose so long as m ≥ 1, thus we can choose m = 1. Therefore making

Wm(s) = km
1

s+ am
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where bm = km and Am = −am. The closed loop reference model transfer function
therefore is

We(s) = km
1

s+ am + l
(4.32)

where ℓ = −l, l > 0. From (4.32), it is clear that there are no zeros limiting the
location of the closed loop pole.

Further more, the Anderson Lemma reduces to the trivial solution of P = 1,
g = 0, and µ = am + l. Since there are no zeros to worry about W ′

e(s) is SPR for all
l. Therefore, µ can can be chosen arbitrarily. The bound in (4.31) for this example
simplifies to

‖ey(t)‖L2 ≤
1

2(am + ℓ)

(

‖e(0)‖2 + ‖φ(0)‖
2

γ |kp|

)

. (4.33)

Remark 4.2. The use of CRMs has two advantages compared to the use of ORMs.
The first is that the reference model need not be SPR a priori, but only needs to be
of appropriate relative degree. There are several methods of dealing with non–SPR
reference models for n∗ = 1, but these methods require the use of pre–filters [39], or
augmented error approaches (see [61], and Section 4.7).

The second advantage is illustrated in Example 4.1. Using this approach, a refer-
ence model can be chosen such that it has no zeros. When this is done and a CRM
is used, the location of the slowest pole of the error model dynamics is free to choose.
When using ORMs, the location of the slowest eigenvalue of the closed–loop error
model is not free to choose, as speeding up the reference model eigenvalues without
the use of CRMs will require the use of high–gain feedback which is equivalent to
‖θ∗‖ being large if the open–loop plant has slow eigenvalues.

4.6 CRM SISO n∗ = 2

Consider the dynamics in (4.2) where the relative degree of the transfer function in
(4.3) is now 2 instead of 1 and the reference to be followed is the CRM in (4.17). The
control input in (4.10) will no longer lead to stable adaptation and must be adjusted
as

u(t) =θ̇T (t)ζ(t) + θT (t)ω(t) (4.34)

θ̇(t) =− sign(kp)ey(t)ζ(t)
T (4.35)

where ζ(t) is a filtered version of the regressor vector ω and defined as

ζ(t) = A−1(s)ω(t) where A(s) = s+ a. (4.36)

Using the same reference model as in (4.17), the error ey(t) now takes the form

ey(t) = kpW
′
e(s)A(s)φ

T (t)ζ(t). (4.37)

With ℓ and A(s) chosen such that the transfer function W ′
e(s)A(s) is SPR the CRM

adaptive controller for n∗ = 2 is stable.
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4.6.1 Performance

The same analysis performed in the previous section can be used to analyze the
n∗ = 2 case. The minimum eigenvalue of W ′

e(s)A(s) in (4.37) along with γ control
the L2 norm of ey. As in the previous example, a reference model with no zeros
that is relative degree 2 can be chosen. Then, the zeros of W ′

e(s)A(s) are completely
determined by A(s) and the poles are freely placed with ℓ. Thus any SPR transfer
function of order 2 can be created with an arbitrarily fast slowest eigenvalue.

4.7 CRM Arbitrary n∗

The adaptive controller for n∗ = 2 is special given that we have access to θ̇(t).
Instead, for higher relative degrees it is common to use an augmented error approach,
where by the original model following error ey is not used to adjust the adaptive
parameter, but an augmented error signal which does satisfy the SPR conditions
needed for stability. The augmented error method used in this result is Error Model
2 as presented in [61, §5.4], with some changes to the notation.

For ease of exposition and clarity in presentation we present the kp known and kp
unknown presentation in two sections.

4.7.1 Stability for known high frequency gain

We begin by replacing Assumption 2 with:

Assumption 4.2′. kp is known.

Without loss of generality we choose km = kp = 1 and the control input for the
generic relative degree case reduces to

u(t) = r(t) + sθT (t)sω(t) (4.38)

where Ď(·) denotes the vectors,

sω(t) , [ωT
1 (t), y(t), ω

T
2 (t)]

T (4.39)

sθ(t) , [θT1 (t), θ0(t), θ
T
2 (t)]

T . (4.40)

A feedforward time varying adaptive gain k(t) is no longer needed and thus r(t) has
been removed from the regressor vector do to the fact that kp = km = 1. The model
following error then, satisfies the following differential relation

ey = W ′
e(s)

sφT
sω (4.41)

where the reader is reminded that the prime notation removes the high frequency
gain from transfer functions, and since km = kp = 1, W ′

e(s) = We(s). Similar to the
use of A(s) in (4.36) for the relative degree 2 case, a stable minimally realized filter
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F (s) with no zeros is used to generate the filtered regressor

sζ = F (s)Isω (4.42)

where I is the 2n − 1 by 2n − 1 identity matrix, F (s) designed with unity high
frequency gain, and F (s) and ℓ chosen so that

W ′
f (s) ,W ′

e(s)F
−1(s) (4.43)

is SPR.

Lemma 4.2. For any stable F (s) an ℓ can be chosen such that W ′
f (s) is SPR.

Proof. The proof follows the same arguments as in Lemma 4.1.

The tuning law for the arbitrary relative degree case uses an augmented error ea,
which is generated from the model following error ey and an auxiliary error eχ. Using
the CRM in (4.17), the augmented and auxiliary error are defined as:

ea , ey +W ′
f (s)

(
eχ − easζT sζ

)
(4.44)

eχ , sθT sζ − F (s)sθT sω. (4.45)

A stable tuning law for the system is then defined as

ṡθ = −γeaζ̄ . (4.46)

Theorem 4.3. Following Assumptions 4.1, 4.2′ and 4.13, with ℓ chosen such that
W ′

f(s) is SPR, the plant in (4.2) with the reference model in (4.17), controller in
(4.38) and update law in (4.46) are globally stable with the model following error ey
asymptotically converging to zero.

Proof. The proof proceeds in 4 steps. First it is shown that sθ(t) and ea are bounded

and that ea, ṡθ ∈ L2. Second, treating sθ(t) as a bounded time–varying signal, then all
signals in the adaptive system can grow at most exponentially. Third, if it is assumed
that the signals grow in an unbounded fashion, then it can be shown that y, ω1 ω2, sω,
sζ and u grow at the same rate. Finally, from the fact that ṡθ ∈ L2 it is shown that ω2

and sω do not grow at the same rate. This results in a contradiction and therefore, all
signals are bounded and furthermore, ey(t) asymptotically converges to zero. Steps 1
and 4 are detailed below. Steps 1-3 follow directly from [61, §5.5] with little changes.
Step 4 does involve a modification to the analysis which is addressed in detail next.

Step 1

Expanding the error dynamics in (4.44) and canceling like terms ofW ′
e(s)

sθTω we have

ea = −W ′
e(s)

sθ∗T sω +W ′
f(s)

(
sθT sζ − easζT sζ

)
.
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Adding and subtracting W ′
f (s)

sθ∗T sζ the equation becomes

ea = W ′
f(s)

(
sφT sζ − easζT sζ

)
+ δ(t) (4.47)

where δ(t) is an exponentially decaying term do to initial conditions and defined as

δ(t) =W ′
f (s)

(
sθ∗T sζ(t)− F (s)sθ∗T sω(t)

)
. (4.48)

Breaking apart sζ from its definition in (4.42) and noting that sθ∗ now commutes with
F (s) we have that

δ(t) =W ′
f (s)

(
sθ∗T (F (s)− F (s)) Isω

)
. (4.49)

Therefore, if the filter F (s) is chosen to have the same initial conditions when con-
structing sζ and eχ then, δ = 0 for all time. For this reason we ignore the affect of
choosing different filter initial conditions. The interested reader can see how one can
prove stability in augmented error approaches where δ(0) 6= 0 [61, pg. 213], with the
addition of an extra term in the Lyapunov function.

A non–minimal representation of ea is given as

ėan = Aeean + ban
(

sφT sζ − easζT sζ
)
, ea = cTanean (4.50)

where
cTan(sI − Ae)

−1ban ,W ′
f(s). (4.51)

Given that Wf(s) is SPR, there exists a Pa = P T
a > 0 such that

AT
e Pa + PaAe = −Qa and Paban = can. (4.52)

where Qa = QT
a > 0.

Consider the Lyapunov candidate

V = eTanPaean +
φTφ

γ
(4.53)

Differentiating along the system dynamics in (4.50) and substitution of the tuning
law from (4.46) results in

V̇ ≤ −eTanQaean − 2e2a
sζT sζ. (4.54)

Therefore, ean, sθ ∈ L∞ and ean, ṡθ ∈ L2

Step 2

The plant dynamics can be expressed as

ẋ = Amnx+ bmn(sφT (t)ω + r); y = cTmnx (4.55)
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where with an appropriate choice of a C can be expressed as

ẋ =
(
Amn + bmn

sφT (t)C
)
x+ bmnr (4.56)

From Step 1 it is known that sφ is bounded, and therefore x grows at most exponen-
tially. Futhermore, for r piecewise continuous, x and sζ are both piecewise continuous
as well.

Step 3

If it is assumed that all signals grow in an unbounded fashion then it can be shown
that

sup
τ≤t
|y(τ)| ∼ sup

τ≤t
‖ω1(τ)‖ ∼ sup

τ≤t
‖ω2(τ)‖ ∼ sup

τ≤t
‖sω‖ ∼ sup

τ≤t
‖sζ‖ ∼ sup

τ≤t
|u(τ)| (4.57)

[61, §5.5]

Step 4

Rewinting (4.45) in terms of sω we have that

eχ , sθTF (s)Isω − F (s)sθT sω (4.58)

and given that ṡθ ∈ L2 and F (s) is stable the following holds

eχ(t) = o

[

sup
τ≤t
‖sω(τ)‖

]

. (4.59)

The above bound follows from the Swapping Lemma [61, Lemma 2.11]. From (4.46)

and the fact that ṡθ ∈ L2 we have that easζ ∈ L2. Given that W ′
f(s) is asymptotically

stable, [61, Lemma 2.9] can be applied and it follows that

W ′
f (s)

(
(easζ)T sζ

)
= o

[

sup
τ≤t
‖sζ(τ)‖

]

(4.60)

The plant output can be written in terms of the reference model and model following
error as

y(t) =ym(t) + ey(t)

=W ′
m(s)r(t) + (1 +W ′

ℓ(s)) ey(t).

Using (4.44), ey(t) = ea −W ′
f(s)

(
eχ − easζT sζ

)
and the above equation expands as

y(t) =W ′
m(s)r(t) + (1 +W ′

ℓ(s)) ea − (1 +W ′
ℓ(s))W

′
f (s)

(
eχ − easζT sζ

)
.
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Using (4.59) (4.60) and noting that 1 +W ′
ℓ(s) is asymptotically stable [61, Lemma

2.9] can be applied again and

y(t) =W ′
m(s)r(t) + (1 +W ′

ℓ(s)) ea + o

[

sup
τ≤t
‖sζ(τ)‖

]

+ o

[

sup
τ≤t
‖sω(τ)‖

]

.

Given that r and ea are piecewise continuous and bounded we finally have that

y(t) = o

[

sup
τ≤t
‖sω(τ)‖

]

. (4.61)

This contradicts (4.57) and therefore all signals are bounded. Furthermore, from
(4.50) it now follows that ėan is bounded and given that ean ∈ L2, from Step 1, it fol-
lows that ean asymptotically converges to zero and therefore limt→∞ ea(t) = 0. From
(4.59) it follows that eχ asymptotically converges to zero. Therefore, limt→∞ ey(t) = 0.
The above analysis differs from the analysis for the ORM output feedback adaptive
control do to the fact that one can not a priori assume that ym(t) is bounded, do to
the feedback of ey into the reference model.

4.7.2 Performance when kp known

Just as in the n∗ = 1 case, with stability proved a Lyapunov performance function
can be studied that uses a minimal representation of the dynamics. That being said,
consider the minimal representation of the dynamics in (4.47)

ėam = Aℓeam + bam
(

sφT sζ − easζT sζ
)
, ey = cTameam (4.62)

in observer canonical form so that cTam = [0 . . . 0 1] and

cTam(sI −Aℓ)
−1bam ,W ′

f(s)

Recall the Anderson version of KY Lemma;

AT
ℓ Pp + PpAℓ = −ggT − 2µPp; Ppbam = cam (4.63)

where µ is defined in (4.28). The following performance function

Vp = eTamPpeam +
sφT sφ

γ
(4.64)

has a time derivative
V̇p ≤ −2µeTamPpeam − 2e2a

sζT sζ. (4.65)

From (4.65) it directly follows that

‖ea(t)‖2L2
≤ 1

2µ

(
λmax(Pp)

λmin(Pp)
‖e(0)‖2 + 1

γ

‖sφ(0)‖2
λmin(Pp)

)

(4.66)
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and

‖ṡθ(t)‖2L2
≤ 1

2

(
γ2λmax(Pp)‖e(0)‖2 + γ‖sφ(0)‖2

)
. (4.67)

Ultimately we would like to compute the L2 norm of eχ and ey. Given that these
norms will depend explicitly on the specific values of the filter and reference model,
we perform that analysis in the following example.

Example 4.2. In this example we consider a relative degree 2 plant. The reference
model is chosen as

Wm(s) =
1

s2 + b1s+ b2
(4.68)

and the filter is chosen as

F (s) =
1

s+ f1
. (4.69)

The reference model gain is expanded as

ℓ =
[
−l1 −l2

]T
. (4.70)

Then

We(s) =
1

s2 + (b1 + l1)s+ (b2 + l2)
(4.71)

and

Wf(s) =
s+ f1

s2 + (b1 + l1)s + (b2 + l2)
. (4.72)

Since, kp = km = 1, then Wm(s) = W ′
m(s), We(s) = W ′

e(s) and Wf(s) =W ′
f (s). For

stability to holdW ′
f (s) must be SPR and from (4.72) it is clear that the SPR condition

can be satisfied by choosing ℓ and f1 appropriately. More importantly though, we see
that the slowest eignvalue of Wf (s) can be arbitrarily placed and thus the µ in (4.28)
can be arbitrarily increased.

‖eχ(t)‖2L2
≤ 3

(
e2χ(0)

2f1
+

(
e2χ(0)

4f 2
1

+
‖sω(t)‖2∞
f 3
1

)

‖ ˙̄θ(t)‖2L2

)

(4.73)

A detailed proof of this expression is given in Appendix B.1. Furthermore, we have
the following bound for the model following error

‖ey(t)‖2L2
≤ 2‖ea(t)‖2L2

+ 2‖eζ(t)‖2L2
(4.74)

where
eζ(t) , Wf(s)eχ(t) (4.75)

can be bounded as

‖eζ‖2L2
≤ 3m2

(
e2ζ(0)

2µ
+

(
eχ(0)

2

4µf1
+
‖sω(t)‖2∞
µf 2

1

)

‖ ˙̄θ(t)‖2L2

)

. (4.76)

The bound in (4.76) is given in Appendix B.2.
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Remark 4.3. Now we compare the norms in (4.73) and (4.76) for an ORM and
CRM system and note that increasing both f1 and µ decreases the two norms. For
the ORM system ℓ = 0, therefore µ is solely a function of b1 and b2 in (4.72). The
coefficients b1 and b2 can not be arbitrarily changed without affecting the matching
parameter vector θ̄∗. In the presence of persistence of excitation, θ̄(t)→ θ̄∗ and large
θ̄∗ will directly imply a large control input. Furthermore, one can not arbitrarily
change the reference model poles, as the reference model is a target behavior for the
plant, in which case the control engineer may not want to track a reference system
with arbitrarily fast poles. Therefore, given that b1 and b2 are not completely free to
choose this also limits the value of f1 as Wf(s) must always be SPR. In the CRM
case b1 and b2 can be held fixed and l1, l2 and f1 can be adjusted so that the poles
of Wf (s) are arbitrarily fast and Wf(s) is still SPR.Therefore, the added degree of
freedom through ℓ in the CRM adaptive systems allows more flexibility in decreasing
the L2 norm of ey.

Remark 4.4. In the above, we have derived bounds on the L2 norm of the tracking
error. That the same error has finite L∞ bounds is easily shown using Lyapunov
function arguments and the fact that projection algorithms ensure exponential con-
vergence of the error to a compact set, similar to the analysis in [21, 22, 24].

4.7.3 Stability in the case of unknown high frequency gain

When kp is unknown but with known sign as in Assumption 2, the control structure
must include k(t) into the adaptive vector as well as including r(t) back into the
regressor vector. Therefore, the controller take the form of (4.10), repeated here in
for clarity,

u(t) = θT (t)ω(t).

The reference model is chosen as in (4.17) where Wm(s) has the same relative degree
as the plant to be controlled and thus the output error is

ey(t) = kpW
′
e(s)φ

T (t)ω(t)

where We(s) is of the same relative degree as the plant. A complete filtered regressor
vector then is defined as

ζ = F (s)Iω (4.77)

where I is the 2n by 2n identity matrix, the high frequency gain of F (s) is unity, and
F (s) and ℓ chosen so that

W ′
f (s) ,W ′

e(s)F (s)
−1 (4.78)

is SPR and Wf(s) = kmW
′
f(s). In addition to the adaptive parameters in the control

law however another adaptive parameter kχ(t) is included whose parameter error is
defined as

ψ , kχ(t)− kp (4.79)
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with an update law shortly to be defined. The error equations for this system then
are constructed as

ea , ey +W ′
f(s)

(
kχeχ − eaζT ζ

)
(4.80)

eχ , θT ζ − F (s)θTω. (4.81)

The update law for the adaptive parameters is then chosen as

θ̇(t) =− γsign(kp)eaζ (4.82)

k̇χ(t) =− γeaeχ. (4.83)

Theorem 4.4. Following Assumptions 1, 2 and 3, with ℓ chosen such that W ′
f(s)

is SPR, the plant in (4.2) with the reference model in (4.17), controller in (4.10)
and update law in (4.82)–(4.83) are globally stable with the model following error ey
asymptotically converging to zero.

Proof. The entire proof would come in 4 parts just as in the proof of Theorem 5. We
however only present a detailed proof of step 1 and then briefly present the other 3
steps.

Step 1

The boundedness of ea, φ and ψ are now addressed. First consider the representation
of (4.80)

ea =W ′
e(s)kpφ

Tω +W ′
f(s)

(
kχeχ − eaζT ζ

)
+W ′

f(s)(kpeχ − kpeχ)

where kpeχ has been added and subtracted from. Expanding kpeχ, W
′
f(s) and φ we

have

ea = W ′
e(s)kp(θ − θ∗)Tω +W ′

f(s)
(
ψeχ − eaζT ζ

)
+W ′

e(s)kpF (s)
−1
(
θT ζ − F (s)θTω

)
.

Canceling like terms in θTω, and adding and subtracting the term W ′
f(s)θ

∗T ζ the
expression reduces to

ea = W ′
f(s)

(
kpφ

T ζ + ψeχ − eaζT ζ
)
+ δ(t) (4.84)

where δ is an exponentially decaying term defined as

δ(t) =W ′
f (s)kp

(
sθ∗T (F (s)− F (s)) Isω

)
.

Therefore, if the filter F (s) is chosen to have the same initial conditions when con-
structing ζ and eχ, then δ = 0 for all time. For this reason we ignore the affect of
choosing different filter initial conditions. The interested reader can see how one can
prove stability in augmented error approaches where δ(0) 6= 0 [61, pg. 213], with the
addition of an extra term in the Lyapunov function. Given that θ∗ is constant and
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the following holds. Now consider a non–minimal representation of ea from (4.84) as

ėan = Aeean + ban
(
kpφ

T ζ + ψeχ − eaζT ζ
)

ea = cTanean
(4.85)

where
cTan(sI − Ae)

−1ban ,W ′
f(s). (4.86)

Given that W ′
f(s) is SPR, there exists a Pa = P T

a > 0 such that

AT
e Pa + PaAe = −Qa and Paban = can. (4.87)

where Qa = QT
a > 0.

Consider the Lyapunov candidate

V = eTanPaean +
φTφ

γ |kp|
+
ψ2

γ
(4.88)

Differentiating along the system dynamics in (4.50) and substitution of the tuning
law from (4.46) results in

V̇ ≤ −eTanQaean − 2e2aζ
T ζ. (4.89)

Therefore, ean, θ, kχ ∈ L∞ and ean, θ̇ ∈ L2.

Step 2

Given that φ is bounded, then (4.15) can grow at most exponentially.

Step 3

The only difference between the kp known and unknown case is the addition of k(t)
in the feedforward loop and kχ(t) in the augmented error. Then, if we assume that
signals in the system grow in an unbounded fashion and using the results from (4.57)
it immediately follows that

sup
τ≤t
|y(τ)| ∼ sup

τ≤t
‖ω1(τ)‖ ∼ sup

τ≤t
‖ω2(τ)‖ ∼ sup

τ≤t
‖sω‖ ∼ sup

τ≤t
‖sζ‖ ∼ sup

τ≤t
‖ω‖ . . .

∼ sup
τ≤t
‖ζ‖ ∼ sup

τ≤t
|u(τ)|

(4.90)

where sζ and sω are defined in (4.42) and (4.39) respectively.
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Step 4

Given that ṡθ ∈ L2 and F (s) is stable the following holds

eχ(t) = o

[

sup
τ≤t
‖ω(τ)‖

]

. (4.91)

Then, following the same steps as in Step 4 from the proof of Theorem 5 we can
conclude that

y(t) = o

[

sup
τ≤t
‖ω(τ)‖

]

. (4.92)

This contradicts (4.90) and therefore all signals are bounded. Furthermore, from
(4.85) it now follows that ėan is bounded and given that ean ∈ L2, from Step 1, it fol-
lows that ean asymptotically converges to zero and therefore limt→∞ ea(t) = 0. From
(4.91) it follows that eχ asymptotically converges to zero. Therefore, limt→∞ ey(t) =
0.

4.8 Conclusion

This work shows that with the introduction of CRMs the adaptive system can have
improved transient performance in terms of reduction of the L2 norm of the model
following error. Similar to previous work in [24], bounds on derivatives of key signals
in the system, and trade–off between transients and learning remain to be addressed
and is the subject of on–going investigation.
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Chapter 5

Control Oriented Modeling of Very
Flexible Aircraft

5.1 Introduction

The first investigations into the dynamics of a highly flexible aircraft came from the
Daedalus Project, initiated in 1984 [13, 42]. The goal of this project was to push the
limits of human powered flight while promoting engineering, science and education.
Prior to the Daedalus Project the longest distance traveled by a human powered plane
was 23 miles, a record set in 1979 with a flight across the English Channel [2]. Over
the course of the project the distance record was broken several times and in 1988
Daedalus 88 flew 73 miles over the Aegean Sea from Iraklion Air Force Base on Crete
to Santorini.

Key results from the project were: an attempt to identify stability derivatives for
a flexible aircraft using flight data [82], modeling the aeroelastic characteristics of a
highly flexible aircraft [78], and tools for analyzing aerodynamic and structural loads
on flexible–high–aspect–ratio wings under large deformation [15]. Van Schoor et al.
[78] identified the importance of including the flexible states in the stability analysis as
the flexible model predicted an unstable phugoid mode with the rigid model predicting
a stable phugoid. Building on his work in [15] Drela designed ASWING [14], a software
package used for the study and simulation of flexible aircraft undergoing arbitrarily
large deformations.

The Daedalus Project, by design, was a segue to High Altitude Long Endurance
(HALE) vehicles. The Helios aircraft, depicted in Figure 5-1, was developed under the
Environmental Research Aircraft and Sensor Technology (ERAST) as a HALE class
vehicle. The aircraft had two configurations specifically tailored to: 1) high altitude
flight and 2) long endurance flight. On August 13th 2001 Helios configuration–1
climbed to a record breaking altitude of 96,863 feet [65]. The second configuration
did not have the same success however, and on June 26th 2003 broke apart mid–flight
during testing. Throughout the flight the aircraft encountered turbulence. After
approximately 30 minutes of flight time a larger than expected wing dihedral formed
and the aircraft began a slowly diverging pitch oscillation. The oscillations never
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subsided and led to flight speeds beyond the design specifications for Helios. The
loading on the aircraft compromised the structure of the aircraft and the skin of the
aircraft pulled apart. One of the key recommendations that came from the flight
mishap investigation was to, “Develop more advanced, multidisciplinary (structures,
aeroelastic, aerodynamics, atmospheric, materials, propulsion, controls, etc) “time-
domain” analysis methods appropriate to highly flexible, “morphing” vehicles” [65].

A large body of work on VFA modeling has come since the Helios flight mishap.
Patil et al. [66] studied the open loop dynamics of a flying wing structure similar
to that of Helios and found that flap positions used to trim the flexible aircraft
differ greatly from those used to trim the rigid aircraft. The authors also captured
instability in the phugoid mode which is present during large dihedral angles. Similar
studies by Raghavan et al. [68] and Su et al. [76] confirmed this result. In order to
validate the modeling approach presented by the authors in [76] the same authors
have built an unmanned very flexible UAV called X–HALE with flight tests coming
in the future [8, 9]. For a more comprehensive literature review see [71].

It is important to distinguish between VFA that can sustain large deviations from
trim dihedral (or mode shape) and those aircraft that cannot sustain a morphed ge-
ometry and simply have structural dynamics on the order of the rigid body dynamics.
To remove such ambiguities, in this paper, we refer to the former class as VFA and the
latter as simply Flexible Aircraft (FA). The former class includes the Helios aircraft
and the aircraft geometry of interest for this work.

The instability associated with VFA and large dihedral configurations has been
thoroughly studied [19,66]. However, the mechanism which initiated the dihedral drift
observed in the Helios accident remains unknown. This work explores the dynamics
of VFA, with particular focus on large dihedral angles. We construct the longitudinal
dynamics of a VFA model containing three rigid wing sections with elastic joint
connections, using which we demonstrate that dihedral drift can occur in the presence
of turbulence. We also carry out further analysis and link the observed instability to
a drift in the phugoid mode as the dihedral angle increases. Finally, we demonstrate
the link between controllability (observability) and different choices of control inputs
(measured outputs), and speculate that the reason for the Helios crash may be due
to weak controllability. An alternate set of inputs and outputs is proposed that can

Figure 5-1: NASA Helios in flight.
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ensure stabilization and therefore a viable, control-configured, VFA design. Modeling,
trim analysis and instability at large dihedral angles, controllability/observability and
turbulence induced dihedral drift are treated in Sections II through V respectively.

5.2 Modeling

5.2.1 Vector Notation

Vectors are defined in bold font as

U = Uxx̂+ Uyŷ + Uzẑ (5.1)

where ·̂ denotes a unit vector with the triple, (x̂, ŷ, ẑ) orthogonal. The same vector
can be defined in two different reference frames using the following notation:

U{1} = Ux1x̂1 + Uy1ŷ1 + Uz1 ẑ1

U{2} = Ux2x̂2 + Uy2ŷ2 + Uz2 ẑ2
(5.2)

and in column vector representation,

U =





Ux

Uy

Uz



 or U{1} =





Ux

Uy

Uz





{1}

=





Ux1

Uy1

Uz1



 (5.3)

if the specific frame of reference is important.

Tensors are defined in bold font with an over bar as

Ī =





Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz



 (5.4)

and with the reference frame of the unit vectors included as

Ī{1} =





Ix1x1 Ix1y1 Ix1z1

Iy1x1 Iy1y1 Iy1z1
Iz1x1 Iz1y1 Iz1z1



 . (5.5)

5.2.2 Forces and Frames for Aircraft Dynamics

Consider the reference frame relations depicted in Figure 5-2. Let (X̂, Ŷ, Ẑ) be an
inertial frame and let the Euler angles (φ, θ, ψ) carry the inertial frame into the
body fixed frame (x̂, ŷ, ẑ) via the successive rotations ψ → θ → φ. Letting the
aerodynamic force vector from pressure differentials on an aircraft be denoted as P,
the transformation from the wind axis forces L, Y , D (Lift, Sideforce, and Drag) to
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ŷ
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Ŷ
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Figure 5-2: Reference frames important for describing aircraft motion.

the body fixed frame (x̂, ŷ, ẑ) is realized through





Px

Py

Pz



 = HB
W (α, β)





−D
Y
−L



 (5.6)

with the wind to body axis transformation matrix formally defined as

HB
W (α, β) ,





cos(α) cos(β) − cos(α) sin(β) − sin(α)
sin(β) cos(β) 0

sin(α) cos(β) − sin(α) sin(β) cos(α)



 (5.7)

where α is the angle of attack and β is the side slip angle, both of which are defined
with respect to the velocity vector v,

V =‖v‖
β =arcsin (vy/V )

α =arctan (vz/vx) ,

(5.8)

and for completeness we include the reverse transformation:





vx
vy
vz



 =





V cos(α)cos(β)
V sin(β)

V sin(α) sin(β)



 . (5.9)

Similarly, the body axis forces can be transformed to the wind axis forces via:

HW
B (α, β) ,

(
HB

W (α, β)
)−1

. (5.10)

The gravity vector g always points in the inertial Ẑ direction, therefore the effect of
gravity is realized in the body axis as

g =





gx
gy
gz



 = g





− sin(θ)
sin(φ) cos(θ)
cos(φ) cos(θ)



 (5.11)
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where g is the gravitational constant.

5.2.3 Linear and Angular Momentum for Very Flexible Air-
craft

The aircraft of interest is shown in Figure 5-3. It is comprised of 3 rigid wings
with elastic connections adjoining them. Each rigid panel has a propeller for thrust
production, an aileron that runs along the aft of the main wing, and an elevator
attached at the end of the boom. A schematic of the aircraft with appropriate axes
and points of interest labeled is shown in Figure 5-4.

We are only interested the longitudinal dynamics of this aircraft. Therefore, de-
noting the angular momentum of the center of mass fixed frame (axes–g at point d)
as ωd, it is assumed that

ω
{g}
d =





0
ωd,yg

0



 (5.12)

and the velocity of the center of mass in frame–g is assumed to be of the form:

v
{g}
d =





vd,xg

0
vd,zg



 . (5.13)

Letting F be the total force acting on the system of 3 wings, the linear momentum
of the system changes as:

F =
d

dt
ρd

= m
(
v̇d,xg + vd,zgωd,yg

)
x̂g

+m
(
v̇d,zg − vd,xgωd,yg

)
ẑg

(5.14)

where m is the total mass of the system given as m = 3m∗ with m∗ denoting the
mass of one of the three identical panels making up the flying wing.

The total Moment acting on the system of three wings about point d is defined

Figure 5-3: Artistic rendering of VFA.
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as M and the time rate of change of the angular momentum about d is governed by

M =
d

dt
Hd

=
d

dt
Īdωd + Īd

d

dt
ωd

(5.15)

where Īd is the moment of inertia for the entire wing about the center of mass at
point d. Time rate of change of angular velocity reduces as

d

dt
ωd =ω̇d,yg ŷg + ωd,yg

(
ωd,yg ŷg × ŷg

)

=ω̇d,yg ŷg.
(5.16)

Next we investigate the moment of inertia. The total moment of inertia has been
defined as Ī. Now let the moment of inertia for each individual wing about its re-
spective center of mass be defined as Ī∗. The moment of inertia then for the wing in
frame–3 about point d is then:

Ī∗d,wing–3 = Ī∗ +m∗ (〈cd, cd〉 I − cd ⊗ cd) (5.17)

where cd is the vector from point c to point d, 〈·, ·〉 is the inner product operator, I
is a 3 × 3 identity matrix carrying the inner product into the tensor space and ⊗ is
the outer product. The moment of inertia for wings 1 and 2 can be calculated and
hence forth denoted as Ī∗d,wing–1 and Ī∗d,wing–2. Then the total moment of inertia for
the entire system becomes

Ī = Ī∗d,wing–1 + Ī∗d,wing–2 + Ī∗d,wing–3. (5.18)

Given that the angular velocity only has a non–zero component in the yg axis, the
only component from the moment of inertia that is important is Iygyg where

Iygyg = c1 + c2 sin
2(η) (5.19)

with c1 = 3I∗yy and c2 = 2I∗zz − 2I∗yy +m∗ s2

6
. The only unknown quantity is the time

varying nature of the dihedral angle. Up until this point the equations of motion have
all been calculated from the center of mass of the entire system. In what follows we
derive the dynamics of the dihedral angle from point j. The angular momentum of

ẑ1

ŷ1

ẑ2
ŷ2

ẑ3
ŷ3

ẑgŷg

a

b

c
d

j
η

Figure 5-4: Schematic of VFA.
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wing–3 about point j is
H∗

j = jc × ρ
∗ +H∗

c (5.20)

where

jc × ρ
∗ = − s

2
ŷ3 ×m∗





vc,x3
vc,y3
vc,z3





H∗
c =





I∗x3x3
0 0

0 I∗y3y3 0
0 0 I∗z3z3









ωc,x3

ωc,y3

ωc,z3





(5.21)

where the angular momentum of frame–3, denoted as ωc is related to the angular
momentum in frame–2, ωb = ωd by the following:





ωc,x3

ωc,y3

ωc,z3



 =





1 0 0
0 cos(η) sin(η)
0 − sin(η) cos(η)









ωd,x2

ωd,y2

ωd,z2



+





η̇
0
0



 (5.22)

and noting that ωd,x3 = ωd,z3 = 0, the angular momentum of frame–3 about point j
becomes

H∗
j =





− s
2
m∗vc,z3
0

s
2
m∗vc,x3



+





I∗x3x3
η̇

I∗y3y3 cos(η)ωd,y2

−I∗z3z3 sin(η)ωd,y2



 . (5.23)

The angular momentum H∗
j is then expanded so that all of the velocity components

are with respect to frame–2,

H∗
j =

(
− s

2
m∗
((
vd,z +

s
3
ηcη̇
)
ηc − η̇ s

2

)
+ I∗xxη̇

)
x̂3

+
(
I∗yyηcωd,y

)
ŷ3

+
(

s
2
m∗
(

vd,x −
s

6
ηsωd,y

)

− I∗zzηsωd,y

)

ẑ3

(5.24)

where the subscript 2 has been removed to save space, and the following definitions
have been used:

ηc , cos(η)

ηs , sin(η)

ηsc , sin(η) cos(η).

(5.25)

Taking the time derivative H∗
j and relating only the x–axis external and internal

moments

M∗
j,x3
− 2ωκζκη̇ − ω2

κη =− s
2
m∗
(
v̇d,zηc − vd,zηsη̇ − s

3
η2
c
η̈ + 2 s

3
ηscη̇

2
)

+
(

I∗xx +m∗ s2

4

)

η̈ +
(
I∗yyηcωd,y

)
ηsωd,y

+
(
s
2
m∗
(
vd,x − s

6
ηsωd,y

)
− I∗zzηsωd,y

)
ηcωd,y.

(5.26)
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where M∗
j,x3

is the total external moment acting on joint–j through wing–3, ζκ is the
damping ratio for the joint and ωκ is the undamped natural frequency of the joint.

5.2.4 Forces and Moments acting on VFA in Stability Axis

Frame

The loads on an airfoil are defined in the wind axis frame. Using the relations illus-
trated in Figure 5-2, we denote the magnitude of the velocity at the center of mass
as V and the angle of attack as α, note that β = 0. The three panels each have their
own local (Vi, αi, βi) i = 1, 2, 3. For ease of exposition and to conform with historical
notation the pitch rate of the center of mass frame is redefined as q , ωd,yg .

The total wind axis forces defined with respect to the center of mass of the vehicle
are denoted

W =





−D
0
−L



 (5.27)

which are defined relative to the body axis forces through the center of gravity body
fixed frame g as:

W = HW
B (α, β)

(

P{g}
w +P

{g}
t

)

(5.28)

where Pw is the resultant pressure driven force from the three wing sections

P{g}
w =Rx(η)H

B
W (α1, β1)W

∗
w,1

︸ ︷︷ ︸

P∗
w,1

+HB
W (α2, β2)W

∗
w,2

︸ ︷︷ ︸

P∗
w,2

+Rx(−η)HB
W (α3, β3)W

∗
w,3

︸ ︷︷ ︸

P∗
w,3

(5.29)

and where Pt is the resultant pressure driven force from the three tail sections

P
{g}
t =Rx(η)H

B
W (α1, β1)W

∗
t,1

︸ ︷︷ ︸

P∗
t,1

+HB
W (α2, β2)W

∗
t,2

︸ ︷︷ ︸

P∗
t,2

+Rx(−η)HB
W (α3, β3)W

∗
t,3

︸ ︷︷ ︸

P∗
t,3

.

(5.30)

Both of which are part of the total force acting on the body:

F{g} = P{g}
w +P

{g}
t +T{g} + g{g}. (5.31)
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The local pressure driven forces defined in the local stability axes are given by

W∗
w,i =





−D∗
w,i

0
−L∗

w,i



 W∗
t,i =





−D∗
t,i

0
−L∗

t,i



 i = 1, 2, 3 (5.32)

and the total thrust as

T =





T
0
0



 =

3∑

i=1





T ∗
i

0
0





︸ ︷︷ ︸

T∗
i

(5.33)

where T ∗
i are the thrust force vectors applied on each wing by a propeller engine.

The local lift and drag on the wing and tail sections are defined as:

L∗
w,i = ρ̄∗iCLw,i

S∗
w CLw,i

= CL0 + CLααi + CLδ
δa,i

L∗
t,i = ρ̄∗iCLt,i

S∗
t CLt,i

= CLα(αi + δe,i)

D∗
w,i = ρ̄∗iCDw,i

S∗
w CDw,i

= CD0 + κDC
2
Lw,i

D∗
t,i = ρ̄∗iCDt,i

S∗
t CDt,i

= CD0 + κDC
2
Lt,i

where ρ̄∗i is the local dynamic pressure at the center of each wing, S∗
w is the area of

the wing and S∗
t is the area of the tail, δa,i are the aileron deflection angles and δe,i

are the elevator deflection angles with i = 1, 2, 3.

The total moment on the aircraft is parameterized as





0
M
0



 = M{g} =

3∑

i=1

(
M∗

i + lw,i ×P∗
w,i + lt,i ×P∗

t,i

)
, (5.34)

where M∗
i =

[
0 M∗

i 0
]T

and

M∗
i = ρ̄∗iCMi

cwS
∗
w CMi

= CM0 + CMδ
δa,i (5.35)

where cw is the cord length of the wing, and lw,i and lt,i are the vectors that point
from the quarter cord of the wing to the center of mass and the vectors that point
from the quarter chord of the tail to center of mass, respectively. The length of the
boom connecting from the quarter chord of the wing to the quarter chord of the tail
is denoted lb. Finally, the hinge moment at j acting on wing–3 in the x–direction is
redefined as

H ,M∗
j,x3

= −(P ∗
w,1z

+ P ∗
t,1z

)−m∗g cos(η) cos(θ) (5.36)

The dynamics for the VFA can now be be compactly expressed in the wind axis
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as:

V̇ =(T cosα−D) /m− g sin γ
α̇ =− (T sinα + L) /(mV ) + q + g cos(γ)/V

ḣ =V sin γ

θ̇ =q

q̇ =
M− 2c2 sin(η) cos(η)η̇q

c1 + c2 sin
2(η)

η̈ =
H− 2ωκζκη̇ − ω2

κη + d1 − d2
d3

(5.37)

where h is the height, γ = θ − α, and

c1 =3I∗yy

c2 =2I∗zz − 2I∗yy +m∗ s2

6

d1 =m
∗ s
2

((

V̇ sin(α) + V cos(α)α̇
)

ηc

)

−m∗ s
2

(
V sin(α)ηsη̇ + 2 s

3
ηscη̇

2
)

d2 =
(

I∗yy − I∗zz −m∗ s2

12

)

ηscq
2 − s

2
m∗ηcV cos(α)q

d3 =I
∗
xx +m∗

(
s2

4
+ s2

6
η2
c

)

.

(5.38)

The geometric parameters and aerodynamic coefficients for the VFA are listed in
Table 5.1.

5.3 Effect of Large Dihedral Angles

5.3.1 Trim Analysis

A trim analysis is now carried out to ensure that the VFA model presented captures
the unstable phugoid mode that was observed in the higher fidelity models [66,68,76].
It should be noted that the model presented differs from the authors’ previous work
in [19] as the amount of structural damping has been significantly reduced.

The nonlinear dynamics in (5.37) can be compactly expressed as

Ẋ = f(X,U) (5.39)

where X is the state vector and U is the control input:

X =
[
V α h θ q η η̇

]T

U =
[
δac δao δec δeo δT

]T
.

(5.40)

The subscript ac and ao signify aileron center and aileron outer respectively so that
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Table 5.1: Constants.

Variable Value Units

m∗ 11 [slugs]
I∗xx 54 [ slugs ft2]
I∗yy 5.4 [ slugs ft2]
I∗zz 48 [ slugs ft2]
s 60 [ft]
cw 8 [ft]
ct 2 [ft]
lb 36 [ft]
S∗
w 480 [ft2]
S∗
t 40 [ft2]
CL0 4π2/180 [-]
CLα 2π [-]
CLδ

2 [-]
CM0 0.025 [-]
CMδ

-0.25 [-]
CD0 0.007 [-]
κD 0.07 [-]
ζκ 0.1 [-]
ωκ 80 [-]

δac = δa2 and δao = δai where i ∈ {1, 3}. The subscripts ec and eo signify elevator
center and elevator outer respectively. The control input δT = Ti, i ∈ {1, 2, 3}. The
linear dynamics are then defined as:

ẋ = Ax+Bu+ ǫ(X,U) (5.41)

where x = X−X0, u = U−U0 with X0 the trim state and U0 the trim input satisfying
0 = f(X0, U0),

A =
∂f(X,U)

∂X

∣
∣
∣
∣
X=X0
U=U0

B =
∂f(X,U)

∂U

∣
∣
∣
∣
X=X0
U=U0

(5.42)

and ǫ is the linearization error.

The nonlinear VFA dynamics in (5.39) was linearized at a velocity of 30 ft/s
and a height of 40,000 ft with the dihedral angle varied from 0 to 45 degrees. The
eigenvalues from the study are shown in Figure 5-5. At zero dihedral angle the short
period mode is lightly damped and the phugoid mode is stable. As the dihedral angle
increases the pitch moment of inertia increases, leading to increased damping in the
short period mode and instability in the phugoid mode. The transition to instability
occurs at a dihedral angle of 15 degrees. These results agree with the findings from
Ref. [66].

For the next study the aircraft was trimmed at a dihedral angle of 5 degrees. The
trim inputs were held fixed while the initial condition of the dihedral angle was varied
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from 10 to 30 degrees in 10 degree increments so as to observe the open–loop behavior
of the aircraft. These results are shown in Figure 5-6. For initial conditions of 10
and 20 degrees in dihedral angle the aircraft exhibits steady motion as the dihedral
slowly approaches the trim condition. For large perturbation from trim the dihedral
angle diverges, and thus warranting active dihedral control.

The above discussions clearly reveal that the open loop system is unstable when
linearized around sufficiently large dihedral angles. This directly corroborates the
Helios mishap, which was accompanied by large excursions in dihedral angles and
other state variables (see Figure 5-7 which shows the flight data). As can be seen in
this figure, the dihedral (measured in feet) behaves erratically drifting up and down.
This occurs for several minutes until eventually the dihedral exceeds 35 ft leading to
a diverging oscillation and the ultimate demise of the aircraft.
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Figure 5-5: Eigenvalues for trim points. At zero dihedral angle the short period mode
is lightly damped and the phugoid mode is stable. As the dihedral angle increases
the short period mode damping increases and the phugoid mode becomes unstable.
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Figure 5-6: Initial condition perturbation from trim input for dihedral angle of 5
degrees.

The interesting point to note is that this instability cannot always be controlled
satisfactorily. In fact, as observed in the Helios, the resident controller was in fact
ineffective in overcoming the destabilization. As will be shown in the next section
using the model proposed above, the effect of control is a direct function of the specific
control inputs and measured outputs that are used. We analyze this effect by using
the model proposed in this section, a control design, and metrics of controllability
and observability.

5.4 Control of Dihedral Angles

5.4.1 Control Design

The goal of the controller is to design u, from (5.40), such that the control input
U = U0+u returns the system of equations back to trim in the presence of turbulence.
The control input is defined as

u = −Kx̂ (5.43)

where the observer state x̂ is defined as

˙̂x = (A− LC)x̂+Bu+ Ly (5.44)
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Figure 5-7: Helios flight mishap data (adapted from [65]).

with
L = PoC

TR−1
o (5.45)

and Po = P T
o > 0 the solution to the Observer Algebraic Riccati Equation (OARE)

PoA
T + APo − PoC

TR−1
o CPo +Qo = 0. (5.46)

Qo and Ro are symmetric positive definite free design parameters.

The control input for the baseline controller is then defined as

K = PcBR
−1
c (5.47)

with Pc = P T
c > 0 the solution to the Control Algebraic Riccati Equation (CARE)

PcA+ ATPc − PcBR
−1
c BTPc +Qc = 0. (5.48)

The free design weights (Qc, Rc), are both symmetric and positive definite. The
baseline control input can be compactly expressed as:

u = −Kx̂, ˙̂x = (A− LC − BK)x̂+ Ly, (5.49)

where the free design parameters for the observer and control design are (Qo, Ro, Qc, Rc).
The overall feedback loop is shown in Figure 6-2.
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Figure 5-8: LQG Control Structure.

5.4.2 Controllability and Observability

Recall that a linear system with the pair (A,B), (5.41), is controllable if and only if
the controllability matrix C is full rank, where

C ,
[
B AB A2B · · · An−1B

]
. (5.50)

Similarly, given output measurements y, where

y = Cx, (5.51)

the pair (A,C), is fully observable if and only if the observability matrix O is full
rank, with

O ,










C
CA
CA2

...
CAn−1










. (5.52)

The controllability measure is defined as

µ(O) , κ−1(O) , σmin(O)
σmax(O)

(5.53)

where κ is commonly referred to as the condition number of a matrix and σ signifies
the singular value of a matrix. The observability measure is similarly defined as

µ(C) , κ−1(C) , σmin(C)
σmax(C)

. (5.54)
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Table 5.2: Controllability/Observability Study.

Input Jacobian / Output Selection Inputs/Outputs

B1 T , δac
B2 T , δac , δec
B3 T , δac , δec , δao
B4 T , δac , δec , δao , δeo
C1 V, q, h
C2 V, q, h, η
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Figure 5-9: Measure of controllability as a function of input selection and dihedral
angle.

5.4.3 Controllability and Observability Measures applied to
VFA Model

Table 5.2 contains different control input and measured output definitions. These
definitions will be used in this section, as well as the simulation section that follows.
Figures 5-9 and 5-10 shows different control inputs with their respective controllability
measure as a function of trim dihedral, the only difference between the two figures
is the y axis in Figure 5-10 is in log scale. The general trend observed is that as
the dihedral angle increases so does the the Controllability. It can furthermore be
observed that B1 results in the least controllable configuration and that as more
inputs become available for control the Controllability of the VFA increases. The
observability measures for C1 and C2 are not shown as they both result in a highly
observable configuration. In what follows, we attempt to recreate the Helios crash
using the model and, control inputs and outputs discussed above. Deterministic
disturbances are added to the local velocity vectors so as to simulate turbulence.
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Figure 5-10: Measure of controllability as a function of input selection and dihedral
angle, semilog plot.

5.5 Analysis of Helios Crash

We now carry out a detailed study of the Helios crash using the model presented in
Section II and III and the control design in Section IV. This study consists of four
parts that include: (I) the effect of different input and output configurations in the
presence of turbulence, (II) the effect of variations in the frequency of the turbulence,
(III) the effect of variations in the amplitude of the turbulence, and (IV) a direct
comparison of our model to the Helios crash data. We will show that for a specific
selection of control inputs and measured outputs dihedral drift in the presence of
turbulence occurs regardless of the frequency or amplitude of the turbulence. In all
cases, the nonlinear VFA model in (5.39) with the LQG controller in (6.39) are used.

The turbulence is introduced into the model in (5.39) by adding disturbances to
the local velocity vectors of the three wings. In order to keep the aircraft symmetric
about the x̂g, ẑg plane, there are only local x̂i and ẑi disturbances affecting the
three wings. Furthermore, the disturbances on wing–1 and wing–3 are identical. The
disturbance are generated from a gaussian distribution with mean 0 ft/s and standard
deviation of 1 ft/s sampled at an adjustable interval ∆t with adjustable multiplicative
output gain D.

5.5.1 Part I:

The controller is chosen as in (6.39), with the input matrix B and output matrix C
chosen according to three different cases which are defined in Tables 5.2 and 5.3. The
cost function design parameters for the choice of K and L are chosen as in Table 5.4.
The wind disturbances for this study occur with a ∆t = 0.1 and D = 1. In Case
(i), the control inputs available for stabilization are the thrust and center aileron,
with the measured outputs selected to be the velocity, pitch rate and height of the
VFA. Progressing to Case (ii), the center elevator and outboard ailerons are added as
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Table 5.3: Simulation Cases.

Test Case Control Design Triple

(i) (A,B1, C1)
(ii) (A,B3, C1)
(iii) (A,B3, C2)

Table 5.4: Simulation Cases.

Param. Case (i) Case (ii) Case (iii)

Qc ← diag([0.01 1 0.001 1 1 10 100]) →
Qo ← diag([1 10 1 10 100 10 0.1]) →
Rc diag([100 10]) diag([100 10 10]) diag([100 10 10])
Ro diag([.1 .1 .1]) diag([.1 .1 .1]) diag([.1 .1 .1 .1])

control inputs, which increases the controllability of the aircraft. For the third case
the dihedral angle is added as a measurable output. Each of the simulations begin
with the VFA trimmed at 40,000 ft with a velocity of 30 ft/s and dihedral angle of
12 deg. The results from the simulations are shown in Figure 5-11.

For test Case (i) the VFA model exhibits a similar dihedral trajectory to that of
the Helios aircraft accident shown in Figure 5-7. The dihedral angle can be seen to
drift upwards until instability is encountered where the dihedral begins to oscillate
until it quickly diverges. Test Case (ii) exhibits a bounded behavior. Case (iii) results
in satisfactory performance in the presence of turbulence as the vehicle is more stable
when the dihedral angle is directly measured.

The results from test Case (i) are to be expected given that the control inputs
selected resulted in a weakly controllable system. In test Case (ii) the vehicle exhibits
stable behavior, however without measuring the dihedral angle directly the vehicle
oscillations are further from the trim dihedral as compared to Case (iii). That is, the
dihedral dynamics are not observable with only the velocity, height and pitch rate
as measured outputs. The linear observability analysis suggests that even without
direct measurement of the dihedral angle the system is fully observable, thus illus-
trating that the dihedral dynamics are in fact highly nonlinear. Therefore, in order
to stabilize the Very Flexible Aircraft it is important to select control inputs such
that the underlying linear system is controllable and select measured outputs so that
the dominant nonlinear dynamics of the dihedral are captured. Our speculation is
that in the case of the Helios aircraft the control design did not take into account the
lack of controllability when the outside control surfaces are not used and the inherent
nonlinear relationship between the dihedral angle and the pitch rate of the center
wing section was not accounted for either.

5.5.2 Part II:

The second simulation study analysis the affect of varying the frequency of the tur-
bulence. For this study the same control configuration as test Case (i) is used with
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Figure 5-11: Simulation in the presence of turbulence with ∆t = 0.1 and D = 1 for
the three test case scenarios in Table 5.3.

D = 1 and ∆t ∈ {0.1, 0.05, 0.01} varied over three values. The results from this study
are presented in Figure 5-12. For case when ∆t = 0.1 the results from this study are
identical to test Case (i) in the previous study. So the unsteady behavior is expected.
This confirms that the instability is invariant to the frequency characteristics of the
turbulence and that the VFA is not able to stabilize around its trim condition when
the controller in Case (i) is chosen. Increasing the frequency of the turbulence in fact
leads to a quicker departure of the dihedral angle. It is interesting to note that Cases
(ii) and (iii) once again show a stable behavior (not included in Figure 5-12).

5.5.3 Part III:

We now study the effect of varying the magnitude of the turbulence. For this study
the same control configuration as test Case (i) is used with D ∈ {1,

√
.5,
√
.1} and

∆t = 0.1. The results from this study are presented in Figure 5-13. Once again,
a divergent behavior can be seen with reduction in the amplitude only resulting in
the increase in the amount of time it takes for the dihedral angle to depart. The
simulation scenario with D =

√
0.1 also departs even though this is not captured

over the time window chosen to present the results. At such a low amplitude the
departure is very slow, but the dihedral does eventually surpass 50 deg. Thus from
the two previous studies it is clear that regardless of the frequency or the amplitude
of the disturbance, the VFA is not stable in the presence of turbulence when control
Case (i) is used. One again, Cases (ii) and (iii) led to a stable behavior in this study
as well (not included in Figure 5-13).

5.5.4 Part IV:

The simulation section is closed by directly comparing control Case (i) in the presence
of turbulence, D = 1 and ∆t = 0.05, to the Helios flight data. This comparison is
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Figure 5-12: Comparison of dihedral measured in ft for Helios mishap and VFA sim
Case (i), D = 1, and ∆t ∈ {0.1, 0.05, 0.01}.

shown in Figure 5-14. The simulation data shown in red is matched to the Helios data
in black at the excursion point on the right hand side of the plot, just after the 10:35
mark. This overlay illustrates that the Helios crash can be mimicked with; a simple
first principles model of a three panel VFA, a classical LQG controller in the presence
of disturbances, and an improper selection of control inputs and measurement.

5.6 Conclusions

A model sufficient for control design and analysis of VFA has been presented. Con-
trollability studies suggest that the dihedral dynamics are weakly controllable and
when the outer control surfaces are not used in the control design the VFA is in the
most weakly controllable configuration. While the observability studies were incon-
clusive in the linear setting, it is clear that the dynamics of the dihedral in relation
to the other states are highly nonlinear, and thus direct measurement of the dihe-
dral is necessary for satisfactory dihedral stabilization. Finally, it was shown that
when a controller is designed without taking these lessons into account VFA can be
susceptible to turbulence induced dihedral drift, as was the case in the Helios flight
mishap. This result ultimately suggests that the conclusions from the flight mishap
investigation are not necessarily correct. More sophisticated multidisciplinary analy-
sis techniques are not needed to understand what caused the Helios crash. A simple
control oriented model with classical control analysis suffices.
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Chapter 6

Modern Output Feedback
Adaptive Control

In the following sections we are concerned with systems of the following form:

ẋ = Ax+BΛu, y = CTx (6.1)

where x ∈ Rn, u ∈ Rm, and y ∈ Rm. The only known quantities are B and C, Λ > 0
is diagonal with known sign only and A is unknown. The goal is to design a control
input u so that x tracks the reference model state xm

ẋm = Amxm +Br − Le, ym = CTxm (6.2)

where r ∈ R
m is the reference input and y alone is available for measurement.

We are only presenting results for square systems, i.e. the same number of outputs
as inputs, in this paper. Note however that squaring-up and squaring-down proce-
dures do exists that allow for the adaptive control of non-square systems, similar to
what is done in [47, §13]

The following assumptions are made throughout.

Assumption 6.1. The product CTB is full rank.

Assumption 6.2. The system in (6.1) is observable.

Assumption 6.3. There exists a Θ∗ ∈ Rn×m such that A + BΛΘ∗T = Am. Note
that in general this condition is stronger than (A,B) controllable.

The uncertain parameters live in bounded sets.

sup
Θ,Θ∗∈Ω1

‖Θ̃‖F , Θmax sup
K,K∗∈Ω2

‖K̃‖F , Kmax, (6.3)

It will be shown that the control input

u = ΘT (t)xm +KT (t)r (6.4)
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has stable update laws which lead to limt→∞ ey(t) = 0 where ey = y− ym. The model
following error satisfies the following dynamical relation:

ė = (Am + LCT )e+BΛ
(

Θ̃Txm + K̃T r + Θ̃∗T e
)

ey = CT e
(6.5)

6.1 SISO: Zero Annihilation

We begin with the selection of the observer gain.

Lemma 6.1. For the system in (6.1) satisfying Assumptions 6.1-6.3 and SISO (m =
1) there exists an L such that

CT (sI − Am − LCT )−1B =
a

s+ µ

where µ > 0 is completely free to choose and a = CTB.

Proof. Given that CTB is non-zero CT (sI − Am − LCT )−1B is a relative degree
1 transfer function. Furtheremore, given that the system is observable all of the
eigenvalues of Am + LCT are free to choose. Therefore, one can place n − 1 of the
Eigen values of Am +LCT at the n− 1 zeros of CT (sI −Am)

−1B and the n-th Eigen
value value of Am + LCT at −µ.

Corollary 6.1. As a direct consequence of the above Lemma, the SISO transfer func-
tion (CTB)CT (sI −Am−LCT )−1B is SPR. Therefore, there exists P = P T > 0 and
Q = QT > 0 such that

(Am + LCT )TP + P (Am + LCT ) = −Q
PB = C(BTC).

(6.6)

The error dynamics for ey are now presented in their minimal form when L is
chosen as in Lemma 6.1.

ėy = −µey + CTBΛ
(

Θ̃Txm + K̃T r +Θ∗T e
)

(6.7)

The update laws for the adaptive parameters are given as

Θ̇ =ProjΩ1
(−ΓθxmeyB

TC,Θ)

K̇ =ProjΩ2
(−ΓkreyB

TC,K)
(6.8)

Theorem 6.1. The Adaptive system given in (6.1), (6.2), (6.18), following Assump-
tions 6.1-6.3 and with L chosen as in Lemma 6.1 is stable, and limt→∞ e(t) = 0 for
all µ > µ∗ where

µ∗ = 4(CTB)2Λ2Θ∗Tλmin(Q)
−1Θ2

max
. (6.9)
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Proof. Consider the Lyapunov candidate function

V = eTPe+ e2y + 2Tr(ΛΘ̃TΓ−1Θ̃) + 2Tr(ΛK̃TΓ−1K̃) (6.10)

For simplicity of exposition we will derive the result for when the projection algorithm
is not active. Then using the fundamental properties of the projection algorithm the
same result trivially holds. Taking the time derivative of (6.10) along the system
trajectories in (6.5) and (6.7) , along with the substitution of the update laws in
(6.18) and (6.6), the following holds:

V̇ =− eTQe+ 2eTPBΛΘ∗T e

+ 2eTPBΛΘ̃Txm + 2Tr(ΛΘ̃TxmeyB
TC)

+ 2eTPBΛK̃Tr + 2Tr(ΛK̃T reyB
TC)

− 2µe2y + 2eyC
TBΛΘ∗T e

+ 2eyC
TBΛΘ̃Txm + 2Tr(ΛΘ̃TxmeyB

TC)

+ 2eyC
TBΛK̃T r + 2Tr(ΛK̃T reyB

TC)

(6.11)

Using the fact that PB = C(BTC) from (6.6) and the fact the Trace operator is
invariant under cyclic permutations the inequality in (6.11) can be rewritten as

V̇ =− eTQe+ 2eTPBΛΘ∗T e

+ 2eTC(BTC)ΛΘ̃Txm − 2eyB
TCΛΘ̃Txm

+ 2eTC(BTC)ΛK̃T r − 2eyB
TCΛK̃T r

− 2µe2y + 2eyC
TBΛΘ∗T e

+ 2eyC
TBΛΘ̃Txm − 2eyB

TCΛΘ̃Txm

+ 2eyC
TBΛK̃T r − 2eyB

TCΛK̃T r

(6.12)

Using the fact that ey = CT e and for a SISO system CTB = BTC the 2nd, 3rd, 5th
and 6th lines in the above equation equal zero. Therefore, (6.12) can be written as

V̇ = −ETM(µ)E (6.13)

where

M(µ) =

[
2µ −2CTBΛΘ∗T

−2Θ∗ΛBTC Q

]

E =

[
ey
e

]

Given that µ > µ∗, µ is necessarily positive and 2µ− 4(CTB)2Λ2Θ∗TQ−1Θ∗ > 0. By
Lemma 2.2, M(µ) is positive definite. Therefore V̇ ≤ 0 and thus ey, e, Θ̃, K̃ ∈ L∞.
Furthermore, given that M is positive definite ey, e ∈ L2. Using Barbalat Lemma it
follows that limt→∞ e(t)→ 0.
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6.2 MIMO Square: Zero Annihilation

Lemma 6.2. For the system in (6.1) satisfying Assumptions there exists an L such
that CT (sI −Am−LCT )−1B has n−m poles at the transmission zeros and the other
m poles with real component less than µ > 0.

Proof. Given that the system is observable all of the eigenvalues of Am + LCT are
free to choose. Therefore, one can place n −m of the Eigen values of Am + LCT at
the n − m transmission zeros of CT (sI − Am)

−1B and m Eigenvalues to the left of
−µ on the real line. See Figure 6-1.

−µ

R

I

Figure 6-1: PZ Map for MIMO system with feedback gain L chosen as in Lemma 6.2.

A minimal representation for the system in (6.5) with L chosen as in Lemma 7,
is now given

ėy = Āey + B̄Λ
(

Θ̃Txm + K̃T r + Θ̃∗T e
)

(6.14)

Given that Ā is Hurwitz, the following relation holds,

ĀT P̄ + P̄ Ā = −Q̄. (6.15)

Furthermore, from the AKY Lemma, defining

C̄ , P̄ B̄ (6.16)

the transfer function C̄T (sI − Ā)−1B̄ is SPR. This also implies that the transfer
function C̄TCT (sI−Am−LCT )−1B is SPR. Therefore, there exists P = P T > 0 and
Q = QT > 0 such that the following relation holds

(Am + LCT )TP + P (Am + LCT ) = −Q
PB = CC̄.

(6.17)

The update law for the adaptive system is then chose as

Θ̇ =ProjΩ1
(−Γθxme

T
y C̄,Θ)

K̇ =ProjΩ2
(−Γkre

T
y C̄,K)

(6.18)
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Theorem 6.2. The Adaptive system given in (6.1), (6.2), (6.18), following Assump-
tions 6.1-6.3 and with L chosen as in Lemma 6.2 is stable, and limt→∞ e(t) = 0 for
all µ > µ∗ where

µ∗ = 4
λmax(Λ)

2‖C̄‖2Θmax

λmin(P̄ )λmin(Q)
. (6.19)

Proof. Consider the Lyapunov candidate function

V =eTPe+ eTy P̄ e + 2Tr(ΛΘ̃TΓ−1Θ̃)

+ 2Tr(ΛK̃TΓ−1K̃)
(6.20)

where P̄ and P are defined in (6.15) and (6.17) respectively. For simplicity of expo-
sition we will derive the result for when the projection algorithm is not active. Then
using the fundamental properties of the projection algorithm the same result trivially
holds. Taking the time derivative of (6.10) along the system trajectories in (6.5) and
(6.7) , along with the substitution of the update laws in (6.18) and (6.6), the following
holds:

V̇ =− eTQe + 2eTPBΛΘ∗Te

+ 2eTPBΛΘ̃Txm + 2Tr(ΛΘ̃Txme
T
y C̄)

+ 2eTPBΛK̃T r + 2Tr(ΛK̃T reTy C̄)

− eTy Q̄ey + 2eTy P̄ B̄ΛΘ∗Te

+ 2eTy P̄ B̄ΛΘ̃Txm + 2Tr(ΛΘ̃Txme
T
y C̄)

+ 2eTy P̄ B̄ΛK̃T r + 2Tr(ΛK̃T reTy C̄)

(6.21)

Using the fact that P̄ B̄ = C̄, PB = CC̄, ey = CT e and the fact the Trace operator
is invariant under cyclic permutations the inequality in (6.21) can be rewritten as

V̇ =− eTQe+ 2eTy C̄ΛΘ
∗T e

+ 2eTy C̄ΛΘ̃
Txm − 2eTy C̄ΛΘ̃

Txm

+ 2eTy C̄ΛK̃
T r − 2eTy C̄ΛK̃

T r

− eTy Q̄ey + 2eTy C̄ΛΘ
∗Te

+ 2eTy C̄ΛΘ̃
Txm − 2eTy C̄ΛΘ̃

Txm

+ 2eTy C̄ΛK̃
T r − 2eTy C̄ΛK̃

T r

(6.22)

Note that the 2nd, 3rd, 5th and 6th lines in the above equation equal zero. Therefore,
(6.22) can be written as

V̇ = −ETM(µ)E
where

M(µ) =

[
Q̄ −2C̄ΛΘ∗T

−2Θ∗ΛC̄T Q

]

E =

[
ey
e

]
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Q̄ ≥ µP̄ and therefore

M(µ) ≥
[

µ̄P̄ −2C̄ΛΘ∗T

−2Θ∗ΛC̄T Q

]

E =

[
ey
e

]

Given that µ > µ∗, µ is necessarily positive and µP̄ − 4C̄ΛΘ∗TQ−1Θ∗ΛC̄T > 0.
By Lemma 2.2,M(µ) is positive definite. Therefore V̇ ≤ 0 and thus ey, e, Θ̃, K̃ ∈ L∞.
Furthermore, given that M is positive definite ey, e ∈ L2. Using Barbalat Lemma it
follows that limt→∞ e(t)→ 0.

6.3 MIMO LQG/LTR

Let L in (6.2) be chosen as
Lν = −PνCR

−1
ν . (6.23)

where Pν is the solution to the Riccati Equation

PνA
T
m + AmPν − PνCR

−1
ν CTPν +Qν = 0 (6.24)

where Q0 = QT
0 > 0 in Rn and R0 = RT

0 > 0 in Rm and ν > 0, with

Qν = Q0 +

(

1 +
1

ν

)

BBT , Rν =
ν

ν + 1
R0.

Note that (6.24) can also be represented as

Pν(Am + LCT )T + (Am + LCT )Pν = −PνCR
−1
ν CTPν −Qν (6.25)

which is also equivalent to

(Am + LCT )T P̃ν + P̃ν(Am + LCT ) = −CR−1
ν CT − Q̃ν (6.26)

where
P̃ν = P−1

ν and Q̃ν = P̃νQνP̃ν .

The update law for the adaptive parameters is then given as

Θ̇ =ProjΩ1
(−Γθxme

T
yR

−1/2
0 W,Θ)

K̇ =ProjΩ2
(−Γkre

T
yR

−1/2
0 W,K)

(6.27)

BTCR
−1/2
0 = UΣV and W = (UV )T .

Remark 6.1. The stability analysis of this method was first presented in [47]. This
remark illustrates one issue with this techniques. Consider the Lyapunov candidate

V = eT P̃νe+ Tr(ΛΘ̃TΓ−1Θ̃) + Tr(ΛK̃TΓ−1K̃).
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Taking the time derivative

V̇ =− eT Q̃νe− eTCR−1
ν CT e+ 2eT P̃νBΛΘ∗T e

+ 2eT P̃νBΛΘ̃Txm + 2Tr(ΛΘ̃Txme
T
yR

−1/2
0 W )

+ 2eT P̃νBΛK̃T r + 2Tr(ΛK̃T reTyR
−1/2
o W )

which can simplify as

V̇ ≤− eT Q̃νe− eTCR−1
ν CT e+ 2eT P̃νBΛΘ∗T e

+O(ν)‖e‖‖xm‖+O(ν)‖e‖‖r‖

as ν → 0. This leads to a problem however, as xm is a function of e and therefore, it
is difficult to bound xm before the boundedness of e is obtained.

Theorem 6.3. The Adaptive system given in (6.1), (6.2), (6.18), following Assump-
tions 6.1-6.3 and with L chosen as in (6.23) is stable, and limt→∞ e(t) = 0 for all ν
sufficiently small.

Proof. Consider the Lyapunov candidate

V = eT P̃0e + Tr(ΛΘ̃TΓ−1Θ̃) + Tr(ΛK̃TΓ−1K̃) (6.28)

Taking the derivative along the system trajectories results in

V̇ =− eT Q̃νe− eTCR−1
ν CT e+ 2eT P̃0BΛΘ∗T e

− eT (Am + LνC
T )T

∞∑

i=1

νiP̃ie

− eT
∞∑

i=1

νiP̃i(Am + LνC
T )e

+ 2eT P̃0BΛΘ̃Txm + 2Tr(ΛΘ̃Txme
T
yR

−1/2
0 W )

+ 2eT P̃0BΛK̃T r + 2Tr(ΛK̃T reTyR
−1/2
o W )

(6.29)

Expanding Rν and Lν and using the fact that P̃0B = CR
−1/2
0 W

V̇ =− eT Q̃νe− eTC
ν + 1

ν
R−1

0 CT e

− eT (Am − P̃νC
ν + 1

ν
R−1

0 CT )T
∞∑

i=1

νiP̃ie

− eT
∞∑

i=1

νiP̃i(Am − P̃νC
ν + 1

ν
R−1

0 CT )e

+ 2eTCR
−1/2
0 WΛΘ∗T e.

(6.30)
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Collecting the O(ν) terms

V̇ ≤− eT Q̃0e−
1

ν
eTyR

−1
0 ey +O(ν)eTe

− eT (P̃νC
ν + 1

ν
R−1

0 CT )TνP̃1e

− eTνP̃1P̃νC
ν + 1

ν
R−1

0 CT e

+ 2eTCR
−1/2
0 WΛΘ∗T e

(6.31)

Collecting more O(ν) terms from the 2nd and 3rd lines above results in

V̇ ≤− eT Q̃0e−
1

ν
eTyR

−1
0 ey +O(ν)eT e

− eTCR−1
0 CTPνP̃1e− eT P̃1P̃νCR

−1
0 CT e

+ 2eTCR
−1/2
0 WΛΘ∗T e.

(6.32)

Using the fact that ey = CT e

V̇ ≤− eT Q̃0e−
1

ν
eTyR

−1
0 ey +O(ν)eT e

− eTyR−1
0 CTPνP̃1e− eT P̃1P̃νCR

−1
0 ey

+ 2eTyR
−1/2
0 WΘ∗T e

(6.33)

Let PΘ = R−1
0 CTPνP̃1 − R−1/2

0 WΘ∗T . Then the above can be simplified as

V̇ ≤ −ETM(ν)E +O(ν)eT e. (6.34)

where

M(ν) =

[
1
ν
R−1

0 PΘ

P T
Θ Q̃0

]

and E =

[
ey
e

]

(6.35)

Given that Q0 is positive definite, 1
ν
R−1

0 > 0 and for ν sufficiently small 1
ν
R−1

0 −
PΘQ̃

−1
0 P T

Θ > 0. It follows that the M(ν) is positive definite and thus adaptive system
is bounded for sufficiently small ν. Furtheremore, given that e is a subset of E , it
follows that e ∈ L2. Thus, by Barbalat Lemma, limt→∞ e(t) = 0.

6.4 Adaptive Control for Very Flexible Aircraft

This section illustrates how the LQG/LTR adaptive controller is ideal for the sta-
bilization of Very Flexible Aircraft. The model that will be used to validate the
controller is that presented in Chapter 5. The inputs available for control are Thrust
T , center elevator δec and the outer ailerons δao , the other inputs, δec and δoc are
fixed at trim values. It is assumed that the states available for measurement are the
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Velocity V , the dihedral angle η, and the pitch rate q. The control problem then is
equivalent to the design of a stabilizing controller for the system

ẋ = Ax+BΛu, y = CTx (6.36)

where x ∈ Rn, u, y ∈ Rm. The system Jacobian A is unknown, and Λ is a positive
unknown diagonal matrix representing uncertain input effectiveness in an aircraft.

The following assumptions are made:

• (A,B) is controllable and (A,CT ) is observable.

• det (CTB) 6= 0.

• CT (sI −A)−1B is minimum phase.

The control design incorporates two components

u = unom + uad (6.37)

a nominal and adaptive component. The nominal and adaptive components are de-
fined as

unom = KTxm and uad = ΘT (t)xm (6.38)

where K is the baseline fixed gain, Θ(t) is the adaptive gain, and xm is the state of
the reference model. The reference model dynamics are defined as

ẋm = (Anom + LνC
T )xm +Bunom + Lνy, ym = CTxm (6.39)

where Anom is a nominal value for the state Jacobian matrix, and Lν is the closed
loop reference model gain chosen as,

Lν = PoCR
−1
o

with Po = P T
o > 0 the solution to the Observer Algebraic Riccati Equation (OARE)

Po(Anom +BKT )T + (Anom +BKT )Po − PoCR
−1
o CTPo +Qo = 0.

The weighting parameters (Qo, Ro), both symmetric and positive definite, are defined
as

Qo = Q0 +
ν + 1

ν
BBT , Ro =

ν

ν + 1
R0

where Q0 and R0 are symmetric positive definite free design parameters and ν is a
small gain parameter.

The control input for the baseline controller is chosen as

KT = −R−1
c BTPc

with Pc = P T
c > 0 the solution to the Control Algebraic Riccati Equation (CARE)

PcAnom + AT
nomPc − PcBR

−1
c BTPc +Qc = 0.
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The free design weights (Qc, Rc), are both symmetric and positive definite. The
reference model Jacobian is defined as

Am , Anom +BKT

and using this definition the reference model dynamics can be simplified as

ẋm = Amxm − LoC
T e

where e = x− xm. The adaptive gain is adjusted as

Θ̇ = Proj
(
Θ,−ΓxmeTyR−1

0 W,F (Θ;ϑ, ε)
)

(6.40)

where

ey = y − ym
W = V UT

BTCR
− 1

2
0 = UΛV T .

The convex function F = [f1 . . . fm]
T ∈ R

m×1 where

fi(θi) = f(θi;ϑ, ε)

with

f(θ;ϑ, ε) ,
‖θ‖2 − ϑ2
2εϑ+ ε2

.

In addition to the reference model and baseline control free design parameters, the
adaptive controller is uniquely defined by the choice of (Γ, ϑ, ε). Schematic represen-
tations for the two controllers can be found in Figure 6-2
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ŷ

˙̂x

Observer

Nonlinear VFA

(b) Adaptive LQG/LTR

Figure 6-2: Comparison of adaptive and linear controller to dihedral disturbance.

121



6.4.1 Comparison of linear and adaptive controllers

Table 6.1: Control Design Parameters.

Variable Value

Q0 I7×7

R0 I3×3

ν 0.04
Qc diag

(
[1 10 1 1 10 0.01 10]T

)

Rc diag
(
[10 100 100]T

)
;

Γ 15 · diag
(
[0.01 0.1 0.0001 1 10 10 0.01]T

)

ϑ 5
ε 0.1

Two simulation studies now follow that compare the a linear LQG/LTR Controller
and an adaptive LQG/LTR controller. The first simulation study is without the
presence of turbulence. The second simulation study is in the presence of turbulence
using the same turbulence model as in Section ?? with D =

√
0.5 and ∆t = 0.1. For

the simulation studies that follows the aircraft was initially trimmed at an altitude
of 1,000 ft, a speed of 35 ft/s with a dihedral angle of 5 deg. Then, the initial
condition on the dihedral angle was changed to 40 deg and then the simulation was
started. Also, to ensure that the controllers were not achieving good performance
while sacrificing robustness to actuator dynamics, a first order actuator model with
a pole at -20 rad/s and a rate saturation limit of 60 deg/s was added to each control
surface. A complete list of the free design parameters used to build the controllers
can be found in Table 6.1.

Simulation results for the first study are displayed in Figures 6-3 through 6-5.
Figure 6-3 shows the first 20 seconds of the simulation run, Figure 6-4 shows 80
seconds of the simulation run, and Figure 6-5 shows the adaptive control parameters
over an 80 second time window. Figures 6-3 and 6-4 contain the dihedral angle,
angle of attack, inner elevator position, and outer aileron position. The first thing
to note in Figure 6-3 is that the adaptive controller is able to reduce the dihedral
more rapidly than the linear controller. When only the linear controller is present the
dihedral oscillates in a divergent fashion and exceeds 50 degrees. It is important to
note that while the adaptive controller has superior stability properties as compared
to the linear controller, the control action required by the adaptive controller is not
excessive. The reason for the lack of stability in the linear controller is due to the
fact that the linear controller is tuned for the VFA with a dihedral angle of 5 degrees.
When the VFA model has a dihedral angle of 45 degrees, the phugoid mode is less
stable and the actuators become less affective. Given that the linear controller was
diverging, only 20 seconds of the linear control history are presented in Figure 6-4.
Over the longer time window, Figure 6-4 illustrates that the adaptive controller is
able to stabilize the VFA back to a dihedral angle of 5 degrees. Looking at Figure 6-5
it is interesting to note that the adaptive control gains do in fact hit the projection
limit of 5. However, the adaptive controller maintaines stability.
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Figure 6-3: Comparison of adaptive and linear controller to dihedral disturbance
t ∈ [0, 20].
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Figure 6-4: Comparison of adaptive and linear controller to dihedral disturbance
t ∈ [0, 80].
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Figure 6-5: Adaptive gains without turbulence t ∈ [0, 80].

Simulation results for the second study (in the presence of turbulence) are dis-
played in Figures 6-6 through 6-8. Figure 6-6 shows the first 20 seconds of the
simulation run, Figure 6-7 shows 800 seconds of the simulation run, and Figure 6-8
shows the adaptive control parameters over an 800 second time window. Figures 6-6
and 6-7 contain the dihedral angle, angle of attack, inner elevator position, and outer
aileron position. Inspecting Figure 6-6 we see that similar to the previous simulation
study the linear controller quickly diverges and the simulation has to be stopped at
16 seconds as the dihedral angle diverges past 50 degrees and the VFA does not re-
cover. Also, as before, the adaptive controller does not use excessive control force in
stabilizing the system, and the angle of attack never exceeds 6 degrees in magnitude.
Comparing the results in Figure 6-6 to those in 6-3 the control surfaces are more
oscillatory due to the presence of turbulence. From Figure 6-7 it can be observered
that adaptive controller is not able to have the dihedral asymptotically track 5 de-
grees. With the presence of turbulence the adaptive controller is only able to bring
the dihedral to a bounded region near trim. Investigating Figure 6-8 we see that
the adaptive parameters hit the projection limits on several occasions, yet stability is
maintained.
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Figure 6-6: Comparison of adaptive and linear controller in the presence of turbulence
over t ∈ [0, 20].
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Figure 6-7: Comparison of adaptive and linear controller to dihedral disturbance in
the presence of turbulence over t ∈ [0, 800].
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Figure 6-8: Adaptive gains in the presence of turbulence t ∈ [0, 800].
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Chapter 7

Conclusions

In this thesis the stability properties and transient performance of adaptive systems
with closed loop reference models was explored. It was shown that CRM adaptive
system have a transient performance improvement that is directly quantifiable by a
reduction in the high frequency oscillations of the adaptive parameters. This result
was shown to hold in scalar, full states accessible and output feedback systems. CRM
adaptive systems can also be designed so as to have filtered regressor vector feedback,
which results in improved performance in the presence of measurement noise and
input disturbances.

A first principles control oriented model of a VFA was also presented. It was
shown that VFA are susceptible to turbulence induced dihedral drift, the most likely
catalyst to the Helios accident. A CRM adaptive system in the form of an LQG/LTR
controller was shown to be a viable candidate for the adaptive control of VFA as well.

7.1 Future Work

One of the biggest observations from the analysis and simulations of CRM adaptive
systems is that there is a trade off between synchronization and adaptation that
can occur. This manifested itself in Chapter 3 when the peaking phenomenon was
explored. When the observer gain is large in magnitude, the reference model can start
to act as an observer more than a reference trajectory. This can have a negative impact
on performance when the open-loop system is unstable as the reference model tracks
the divergent plant. Also, due to the fact that the model following error is small
with large observer gain, the adaptive parameters are not able to quickly stabilize
the system. Thus, with large observer gain the closed-loop system with plant and
reference model can be highly synchronized, and unless the adaptive tuning gain is
chosen appropriately very little adaptation can occur, as was shown in Chapter 3.
With the recent interest in complex systems [1, 50, 64] the notion of synchronization
versus learning in complex networks would be an interesting endeavor.
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Appendix A

Projection Algorithm

A.1 Properties of Convex Sets and Functions

Definition A.1. A set E ⊂ Rk is convex if

λx+ (1− λ)y ∈ E

whenever x ∈ E, y ∈ E, and 0 ≤ λ ≤ 1

Remark A.1. Essentially, a convex set has the following property. For any two
points x, y ∈ E where E is convex, all the points on the connecting line from x to y
are also in E.

Definition A.2. A function f : Rk → R is convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

∀0 ≤ λ ≤ 1.

Lemma A.1. Let f(θ) : Rk → R be a convex function. Then for any constant δ > 0
the subset Ωδ = {θ ∈ Rk|f(θ) ≤ δ} is convex.
Proof. Let θ1, θ2 ∈ Ωδ. Then f(θ1) ≤ δ and f(θ2) ≤ δ. Since f(x) is convex then for
any 0 ≤ λ ≤ 1

f
(
λθ1 + (1− λ)θ2
︸ ︷︷ ︸

θ

)
≤ λ f(θ1)

︸ ︷︷ ︸

≤δ

+(1− λ) f(θ2)
︸ ︷︷ ︸

≤δ

≤ λδ + (1− λ)δ = δ

∴ f(θ) ≤ δ, thus, θ ∈ Ωδ.

Lemma A.2. Let f(θ) : Rk → R be a continuously differentiable convex function.
Choose a constant δ > 0 and consider Ωδ = {θ ∈ Rk|f(θ) ≤ δ} ⊂ R. Let θ∗ be an
interior point of Ωδ, i.e. f(θ

∗) < δ. Choose θb as a boundary point so that f(θb) = δ.
Then the following holds:

(θ∗ − θb)T∇f(θb) ≤ 0 (A.1)

where ∇f(θb) =
(

∂f(θ)
∂θ1
· · · ∂f(θ)

∂θk

)T

evaluated at θb.
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Proof. f(θ) is convex ∴

f (λθ∗ + (1− λ)θb) ≤ λf(θ∗) + (1− λ)f(θb)

equivalently,
f (θb + λ(θ∗ − θb)) ≤ f(θb) + λ (f(θ∗)− f(θb))

For any 0 < λ ≤ 1:

f (θb + λ(θ∗ − θb))− f(θb)
λ

≤ f(θ∗)− f(θb) ≤ δ − δ = 0

and taking the limit as λ→ 0 yields (A.1).

A.2 Projection

Definition A.3. The Projection Operator for two vectors θ, y ∈ Rk is now introduced
as

Proj(θ, y, f) =

{

y − ∇f(θ)(∇f(θ))T

‖∇f(θ)‖2
yf(θ) if f(θ) > 0 ∧ yT∇f(θ) > 0

y otherwise.
(A.2)

where f : Rk → R is a convex function and ∇f(θ) =
(

∂f(θ)
∂θ1
· · · ∂f(θ)

∂θk

)T

. Note that

the following are notationally equivalent Proj(θ, y) = Proj(θ, y, f) when the exact
structure of the convex function f is of no importance.

Remark A.2. A geometrical interpretation of (A.2) follows. Define a convex set Ω0

as
Ω0 ,

{
θ ∈ R

k|f(θ) ≤ 0
}

(A.3)

and let Ω1 represent another convex set such that

Ω1 ,
{
θ ∈ R

k|f(θ) ≤ 1
}

(A.4)

From (A.3) and (A.4) Ω0 ⊂ Ω1. From the definition of the projection operator in
(A.4) θ is not modified when θ ∈ Ω0. Let

ΩA , Ω1\Ω0 =
{
θ|0 < f(θ) ≤ 1

}

represent an annulus region. Within ΩA the projection algorithm subtracts a scaled
component of y that is normal to boundary

{
θ|f(θ) = λ}. When λ = 0, the scaled

normal component is 0, and when λ = 1, the component of y that is normal to the
boundary Ω1 is entirely subtracted from y, so that Proj(θ, y, f) is tangent to the
boundary

{
θ|f(θ) = 1

}
. This discussion is visualized in Figure A-1.

Remark A.3. Note that (∇f(θ))TProj(θ, y) = 0∀θ when f(θ) = 1 and that the
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∇f(θ)

Proj(θ, y)

θ
θ∗

ΩA

{θ|f(θ) = 0}

{θ|f(θ) = 1}

Figure A-1: Visualization of Projection Operator in R2.

general structure of the algorithm is as follows

Proj(θ, y) = y − α(t)∇f(θ) (A.5)

for some time varying α when the modification is triggered. Multiplying the left hand
side of the equation by (∇f(θ))T and solving for α one finds that

α(t) =
(
(∇f(θ))T∇f(θ)

)−1
(∇f(θ))Ty (A.6)

and thus the algorithm takes the form

Proj(θ, y) = y −∇f(θ)
(
(∇f(θ))T∇f(θ)

)−1
(∇f(θ))Tyf(θ) (A.7)

where the modification is active. Notice that the f(θ) has been added to the definition,
making (A.7) continuous.

Lemma A.3. One important property of the projection operator follows. Given θ∗ ∈
Ω0,

(θ − θ∗)T (Proj(θ, y, f)− y) ≤ 0. (A.8)

Proof. Note that

(θ − θ∗)T (Proj(θ, y, f)− y) = (θ∗ − θ)T (y − Proj(θ, y, f))

If f(θ) > 0 ∧ yT∇f(θ) > 0, then

(θ∗ − θ)T
(

y −
(

y − ∇f(θ)(∇f(θ))
T

‖∇f(θ)‖2 yf(θ)

))

and using Lemma A.2

(θ∗ − θ)T∇f(θ)
︸ ︷︷ ︸

≤0

(∇f(θ))Ty
︸ ︷︷ ︸

>0

‖∇f(θ)‖2 f(θ)
︸︷︷︸

≥0

≤ 0
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otherwise Proj(θ, y, f) = y.

Definition A.4 (Projection Operator). The general form of the projection operator
is the n×m matrix extension to the vector definition above.

Proj(Θ, Y, F ) = [Proj(θ1, y1, f1) . . . Proj(θm, ym, ym)]

where Θ = [θ1 . . . θm] ∈ Rn×m, Y = [y1 . . . ym] ∈ Rn×m, and F = [f1(θ1) . . . fm(θm)]
T ∈

Rm×1. Recalling (A.2)

Proj(θj , yj, fj) =

{

yj − ∇fj(θj)(∇fj(θj))T

‖∇fj(θj)‖2
yjfj(θj) if fj(θj) > 0 ∧ yTj ∇fj(θj) > 0

yj otherwise

j = 1 to m.

Lemma A.4. Let F = [f1 . . . fm]
T ∈ Rm×1 be a convex vector function and Θ̂ =

[θ̂1 . . . θ̂m],Θ = [θ1 . . . θm], Y = [y1 . . . ym] where Θ̂,Θ, Y ∈ Rn×m then,

trace
{(

Θ̂−Θ
)T (

Proj(Θ̂, Y, F )− Y
)}

≤ 0.

Proof. Using (A.8),

trace
{(

Θ̂−Θ
)T (

Proj(Θ̂, Y, F )− Y
)}

=

m∑

j=1

(θ̂j − θj)T (Proj(θ̂j , yj, fj)− yj)

≤ 0.

The application of the projection algorithm in adaptive control is explored below.

Lemma A.5. If an initial value problem, i.e. adaptive control algorithm with adaptive
law and initial conditions, is defined by:

1. θ̇ = Proj(θ, y, f)

2. θ(t = 0) = θ0 ∈ Ω1 = {θ ∈ Rk|f(θ) ≤ 1}

3. f(θ) : Rk → R is convex

Then θ(t) ∈ Ω1∀t ≥ 0.

Proof. Taking the time derivative of the convex function

ḟ(θ) = (∇f(θ))T θ̇ = (∇f(θ))TProj(θ, y, f) (A.9)

Substitution of (A.9) into (A.2) leads to

ḟ(θ) = (∇f(θ))TProj(θ, y, f)

=

{

(∇f(θ))Ty(1− f(θ)) if f(θ) > 0 ∧ yT∇f(θ) > 0

(∇f(θ))Ty if f(θ) ≤ 0 ∨ yT∇f(θ) ≤ 0
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therefore 





ḟ(θ) > 0 if 0 < f(θ) < 1 ∧ yT∇f(θ) > 0

ḟ(θ) = 0 if f(θ) = 1 ∧ yT∇f(θ) > 0

ḟ(θ) < 0 if f(θ) ≤ 0 ∨ yT∇f(θ) ≤ 0

.

Thus f(θ0) ≤ 1⇒ f(θ) ≤ 1∀t ≥ 0.

Remark A.4. Given θ0 ∈ Ω0, θ may increase up to the boundary where f(θ) = 1.
However, θ never leaves the convex set Ω1.

Example A.1 (Projection Algorithm in Adaptive Control Law). Let Θ(t) : R+ →
Rm×n represent a time varying feedback gain in a dynamical system. This feedback
gain is implemented as:

u = Θ(t)Tx

where u ∈ Rn represents the control input and x ∈ Rm the state vector. The time
varying feedback gain is adjusted using the following adaptive law

Θ̇ = Proj(Θ,−xeTPB, F )

where e ∈ R
m is an error signal in the state vector space, P ∈ R

m×m is a square
matrix derived from a Lyapunov relationship and B ∈ Rm×n is the input Jacobian for
the LTI system to be controlled and F (Θ) = [f1(θ1) . . . fm(θm))]

T . The projection
algorithm operates with the family of convex functions

f(θ;ϑ, ε) =
‖θ‖2 − ϑ2
2εϑ+ ε2

.

Then, the components of the convex vector function F are chosen as

fi(θi) = f(θi;ϑi, εi). (A.10)

Each i–th component of F is associated with two constant scalar quantities ϑi and
εi. From (A.10), fi(θi) = 0 when ‖θi‖ = ϑi, and fi(θi) = 1 when ‖θi‖ = ϑi + εi.
If the initial condition for Θ is such that Θ(t = 0) ∈ Θ0 = [θ0,1 . . . θ0,m] where
{θ0,i|fi(θi) ≤ 0 i = 1 to m}, then each θi satisfies all three conditions for Lemma A.5.
Thus ‖θi(t)‖ ≤ ϑi + ǫi∀t ≥ 0.

A.3 Γ–Projection

Definition A.5. A variant of the projection algorithm, Γ–projection, updates the
parameter along a symmetric positive definite gain Γ as defined below

Proj(θ, y, f) =

{

Γy − Γ ∇f(θ)(∇f(θ))T

(∇f(θ))T Γ∇f(θ)
Γyf(θ) if f(θ) > 0 ∧ yTΓ∇f(θ) > 0

Γy otherwise.
(A.11)

This method was first introduced in [32].

135



Lemma A.6. Given θ∗ ∈ Ω0,

(θ − θ∗)T (Γ−1Proj(θ, y, f)− y) ≤ 0. (A.12)

Proof. If f(θ) > 0 ∧ yTΓ∇f(θ) > 0, then

(θ∗ − θ)T
(

y − Γ−1

(

Γy − Γ
∇f(θ)(∇f(θ))T
(∇f(θ))TΓ∇f(θ)Γyf(θ)

))

and using Lemma A.2

(θ∗ − θ)T∇f(θ)
︸ ︷︷ ︸

≤0

(∇f(θ))TΓy
︸ ︷︷ ︸

>0

(∇f(θ))TΓ∇f(θ) f(θ)
︸︷︷︸

≥0

≤ 0

otherwise Proj(θ, y, f) = Γy.
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Appendix B

Bounds for Signals in SISO
Adaptive System

B.1 Norm of eχ(t)

In this Appendix we compute the L2 norm of eχ(t). The expression in (4.58) is
equivalent to studying the equation

eχ(t) =
[
sθT (t)− F (s)sθT (t)F (s)−1

]
F (s)Isω(t) (B.1)

Given the definition of F (s) in (4.69) we have that

F (s)sθT (t)F (s)−1 = sθT (t)− 1

s+ f1
˙̄θT (t). (B.2)

This allows (B.1) to be rewritten as

eχ(t) =
1

s+ f1
˙̄θT (t)

1

s+ f1
Isω(t). (B.3)

This is analyzed in 3 parts

|eχ(t)| ≤ χ1(t) + χ2(t) + χ3(t) (B.4)

where

χ1(t) =eχ(0)Φf(t, 0) (B.5)

χ2(t) =

∫ t

0

‖ ˙̄θ(τ)‖Φf (t, τ)eχ(0)Φf(τ, 0)dτ (B.6)

χ3(t) =

∫ t

0

‖ ˙̄θ(τ)‖Φf (t, τ)

∫ τ

0

Φf (τ, z)‖sω(z)‖dzdτ (B.7)

and
Φf (t, τ) = e(−f1(t−τ)). (B.8)
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Then the L2 norm of eχ(t) is obtained as

‖eχ(t)‖2L2
≤ 3

3∑

i=1

∫ ∞

0

χ2
i (τ)dτ. (B.9)

Squaring and integrating (B.5) we have that

∫ ∞

0

χ2
1(τ)dτ ≤

e2χ(0)

2f1
. (B.10)

Notice that Φf (t, 0) = Φf (t, τ)Φf (τ, 0) is not a function of τ and therefore can be
pulled out of the integral in (B.6) resulting in

χ2(t) ≤ eχ(0)Φf (t, 0)

∫ t

0

‖ ˙̄θ(τ)‖dτ. (B.11)

Using Youngs inequality

∫ t

0

‖ ˙̄θ(τ)‖dτ ≤
(∫ t

0

12dτ

)1/2(∫ t

0

‖ ˙̄θ(τ)‖2dτ
)1/2

and therefore
χ2(t) ≤ eχ(0)

√
tΦf (t, 0)‖ ˙̄θ(τ)‖L2. (B.12)

Squaring the result above and integrating we have that

∫ ∞

0

χ2
2(τ)dτ ≤

eχ(0)
2

4f 2
1

‖ ˙̄θ(τ)‖2L2
(B.13)

Integrating the inner integral in (B.7) we have that

χ3(t) ≤
‖sω(t)‖∞

f1

∫ t

0

‖ ˙̄θ(τ)‖Φf (t, τ)(1− Φf (τ, 0))dτ. (B.14)

Noting that [1− Φf (t, 0)] ≤ 1 for all t the above simplifies to

χ3(t) ≤
‖sω(t)‖∞

f1

∫ t

0

‖ ˙̄θ(τ)‖Φf (t, τ)dτ. (B.15)

Using Young’s Inequality we have that

∫ t

0

‖ ˙̄θ(τ)‖Φf (t, τ)dτ ≤
(∫ t

0

Φf (t, τ)dτ

)1/2(∫ t

0

Φf(t, τ)‖ ˙̄θ(τ)‖2dτ
)1/2

(B.16)

and bounding the first integral term we have that

∫ t

0

‖ ˙̄θ(τ)‖Φf (t, τ)dτ ≤
1√
f1

(∫ t

0

Φf (t, τ)‖ ˙̄θ(τ)‖2dτ
)1/2

. (B.17)
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Substitution of (B.17) into (B.15), squaring and integrating we have that

∫ ∞

0

χ2
3(τ)dτ ≤

‖sω(t)‖2∞
f 3
1

‖ ˙̄θ(t)‖2L2
. (B.18)

B.2 Norm of ea(t)

Noting that a
1+b
≤ a for all a, b ≥ 0, ey in (4.44) can be bounded as

|ey(t)| ≤ |ea(t)|+ |Wf (s)eχ(t)| . (B.19)

From (B.3) and the definition ofWf(s) in (4.72) the filtered error state eζ from (4.75)
satisfies the following equality

eζ(t) = We(s)
˙̄θT (t)

1

s+ f1
Isω(t). (B.20)

We will also make use of the fact that there exist an m ≥ 1 such that

e(Aℓt) ≤ me(−µt). (B.21)

eζ is analyzed in 3 parts just as we did with eχ

|eζ(t)| ≤ ζ1(t) + ζ2(t) + ζ3(t) (B.22)

where

ζ1(t) =eζ(0)mΦµ(t, 0) (B.23)

ζ2(t) =eχ(0)m

∫ t

0

‖ ˙̄θ(τ)‖Φµ(t, τ)Φf (τ, 0)dτ (B.24)

ζ3(t) =m

∫ t

0

‖ ˙̄θ(τ)‖Φµ(t, τ)

∫ τ

0

Φf (τ, z)‖sω(z)‖dzdτ (B.25)

and then the L2 norm of eζ(t) is obtained as

‖eζ(t)‖2L2
≤ 3

3∑

i=1

∫ ∞

0

ζ2i (τ)dτ. (B.26)

Squaring and integrating (B.23) we have that

∫ ∞

0

ζ21(τ)dτ ≤
m2e2ζ(0)

2µ
. (B.27)
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Using Young’s inequality the integral in (B.24) can be upper bounded by

(∫ t

0

Φ2
µ(t, τ)Φ

2
f (τ, 0)dτ

)1/2

‖ ˙̄θ(t)‖L2

and after computing the integral in the first term reduces to
(

Φf (2t,0)−Φµ(2t,0)

2(µ−f1)

)1/2

‖ ˙̄θ(t)‖L2 .

Using this, squaring and integrating (B.24) we have that

∫ ∞

0

ζ22 (τ)dτ ≤
m2eχ(0)

2

4µf1
‖ ˙̄θ(τ)‖2L2

(B.28)

Integrating the inner integral in (B.25) we have that

ζ3(t) ≤
m‖sω(t)‖∞

f1

∫ t

0

‖ ˙̄θ(τ)‖Φµ(t, τ)(1− Φf (τ, 0))dτ. (B.29)

Noting that [1− Φf (t, 0)] ≤ 1 for all t the above simplifies to

ζ3(t) ≤
m‖sω(t)‖∞

f1

∫ t

0

‖ ˙̄θ(τ)‖Φµ(t, τ)dτ. (B.30)

Using Young’s Inequality we have that

∫ t

0

‖ ˙̄θ(τ)‖Φµ(t, τ)dτ ≤
(∫ t

0

Φµ(t, τ)dτ

)1/2

·
(∫ t

0

Φµ(t, τ)‖ ˙̄θ(τ)‖2dτ
)1/2

(B.31)

and bounding the first integral term we have that

∫ t

0

‖ ˙̄θ(τ)‖Φf (t, τ)dτ ≤
1√
µ

(∫ t

0

Φµ(t, τ)‖ ˙̄θ(τ)‖2dτ
)1/2

. (B.32)

Substitution of (B.32) into (B.30), squaring and integrating we have that

∫ ∞

0

ζ23(τ)dτ ≤
m2‖sω(t)‖2∞

µf 2
1

‖ ˙̄θ(t)‖2L2
. (B.33)
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Appendix C

MIMO Adaptive Control Squaring
Up Example

Three separate tools are needed for the modern output feedback adaptive controller.
These tools are presented in Sections C.1-C.3. The adaptive control design is given
in Section C.4.

C.1 Creating SPR Transfer Functions for Square

Systems Using Observer Feedback

Consider the triple {A,B,CT} describing the n-dimensional dynamic system

ẋ = Ax+Bu, y = CTx

and
G(s) = CT (sI − A)−1B

as the transfer function form u ∈ Rq to y ∈ Rq. Note that the input and output are
the same dimension so this system is Square. We now present the same notation that
is in [28].

Table C.1: Definitions

Symbol Meaning
XT Transpose
X∗ Complex Conjugate Transpose
X† Moore-Penrose Pseudoinverse

herm{X} 1
2
(X +X∗)

X⊥ Orthonormal, XT
⊥X = 0, [X,X⊥] full rank, X

T
⊥X⊥ = I
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Lemma C.1. If G(s) is minimum phase, CTB = BTC > 0, (A,B) is controllable
and (A,CT ) is observable, then there exists an L such that

CT (sI − (A+ LCT ))−1B

is SPR, and

AT
LP + PAL = −Q

PB = C
(C.1)

where AL , A + LCT with L and P defined by the following relations

L , −BC†herm{PA}(I − C⊥(C
T
⊥herm{PA}C⊥)

−1CT
⊥)herm{PA}C†T −BS

where S ∈ R
q×q is an arbitrary positive definite matrix, and

P , C(BTC)−1CT +B⊥XB
T
⊥

where X is such that the following LMI is satisfied

CT
⊥herm{B⊥XB

T
⊥A}C⊥ < 0

X > 0

For any minimum phase system an X such that the above LMI is satisfied always
exists. [5]

Proof. See [5, 28]

C.2 Squaring Up

Consider the triple {A,B,CT} describing the n-dimensional dynamic system

ẋ = Ax+Bu, y = CTx,

u ∈ Rm and y ∈ Rq.

Definition C.1. Let [z1, z2, . . . , zr] be the zeros of G(s). zi ∈ [z1, z2, . . . , zr] is a
transmission zero of G(s) if G(zi) is rank deficient.

Assumption C.1. Assumptions for squaring up.

1. (A,B) is controllable

2. rank (CTB) = m

3. q > m
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Lemma C.2. Given Assumption 1, a B1 exists such that

G(s) = CT (sI − A)−1B̄

is square and has all of its transmission zeros in the left half plane (i.e. G(s) is
minimum phase) for B̄ , [B,B1].

Proof. See [56]

C.3 Mixing the Outputs

Consider the triple {A,B,CT} describing the n-dimensional dynamic system

ẋ = Ax+Bu, y = CTx,

u ∈ Rq and y ∈ Rq. Choosing
S = (CTB)−1

The system
G1(s) = SCT (sI − A)−1B

has the following property

SCTB = (SCTB)T = I

and furthermore the transmission zeros of CT (sI−A)−1B are equal to the transmission
zeros of SCT (sI − A)−1B. [70]

C.4 Adaptive Control Example

Considering the following system with control input u ∈ Rm and command signal
zcmd ∈ Rne.

ẋ = Ax+BΛu+Bcmdzcmd

y = CTx

z = CT
z x.

The measured outputs are y ∈ Rp, regulated outputs z ∈ Rne, and also we have
x ∈ Rn, Λ ∈ Rm×m is an unknown positive diagonal matrix of known sign, and
A ∈ Rn×n, B ∈ Rn×m, Bref ∈ Rn×ne, Cz ∈ Rne×n, and C ∈ Rp×n are all known
matrices. The controller is defined as

u = KTxm + θT (t)xm. (C.2)

whereKT is obtained from an LQR control design (i.e. Matlab -K’=LQR(A,B,Rxx,Ruu))
and θ(t) is the adaptive parameter. Note that feedback is through xm and not x.
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The reference model is chosen as

xm = Amxm +Brefzcmd + L(y − ym)
ym = CTxm

where xm ∈ Rn, ym ∈ Rp, L ∈ Rn×p and Am ∈ Rn×n, where Am , A + BKT . It is
assumed that a θ∗ exists such that

Am = A+ BKT +Bθ∗T . (C.3)

We now describe how L and the update law for θ(t) are found

Step 1

Using the squaring up result from Section 2 we find a B1 such that

CT (sI −A)B̄

is square where
B̄ = [B, B1] (C.4)

and CT (sI −A)B̄ is minimum phase.

Step 2

Choose S = (CT B̄)−1.

Step 3

Using the results from Section 1, we choose an L such that

SCT (sI − (A+ LCT ))B̄

is SPR.

Theorem C.1. There exist a P = P T , Q = QT > 0, S1 such that

AT
LP + PAL = −Q, AL , A+ LCT

PB = CST
1

(C.5)

where ST = [ST
1 , S

T
2 ].

Proof. From (C.1) in Lemma C.1 we have that

AT
LP + PAL = −Q
PB̄ = CST
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Expanding B̄ from (C.4) and S as defined in Step 2, we have that

P [B, B1] = C[ST
1 , S

T
2 ]

Removing the right hand side columns we have that PB = CST
1 .

The update law is now given as

˙̃
θ = θ̇ = −Γxm(S1ey)

T (C.6)

where e = x− xm, ey = CT e and Γ = Γ > 0.

The error dynamics can be described as:

ė = Ax+BΛu+Bcmdzcmd −Amxm − Bcmdzcmd + L(y − ym) (C.7)

where
θ̃ = θ − θ∗. (C.8)

Notice that the term Bcmdzcmd appears in addition and subtraction, and noting that
y − ym = CT e we have

ė = Ax+BΛu−Amxm + LCT e.

Expanding Am from the matching condition in (C.3)

ė = Ax+BΛu− (A+BΛθ∗T +BΛKT )xm + LCT e.

Substitution of u as defined in (C.2) results in

ė = Ae+BΛKTxm +BΛθTxm −BΛθ∗Txm − BΛKTxm + LCT e.

Collecting the factors of e, noting the cancellation of the term BΛKTxm, and using
the definition of θ̃ in (C.8), we have

ė = (A+ LCT )e+BΛθ̃Txm.

The stability result follows from analyzing the Lyapunov candidate

V = eTPe+ Trace
(

θ̃TΓ−1θ̃Λ
)

and differentiating we have

V̇ = eT (AT
LP + PAL)e + 2eTPBΛθ̃Txm + 2Trace

(

θ̃TΓ−1θ̇Λ
)

Substituting the fact that AT
LP + PAL = −Q and PB = CST

1 from (C.5),

V̇ = −eTQe + 2eTCST
1 Λθ̃

Txm + 2Trace
(

θ̃TΓ−1θ̇Λ
)

.
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Using the fact that eTC = eTy and the substitution of the update law for θ̇ in (C.6)
we have that

V̇ = −eTQe + 2eTy S
T
1 Λθ̃

Txm − 2Trace
(

θ̃Txm(S1ey)
TΛ
)

and expanding the transpose

V̇ = −eTQe + 2eTy S
T
1 Λθ̃

Txm − 2Trace
(

θ̃Txme
T
y S

T
1 Λ
)

. (C.9)

Note that the Trace operator has the following property

Trace
(

θ̃Txme
T
y S

T
1 Λ
)

= eTy S
T
1 Λθ̃

Txm. (C.10)

Using (C.10), (C.9) simplifies to

V̇ = −eTQe.

Thus our adaptive system is stable and limt→∞ e(t) = 0.
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