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Problem Statement

Adaptive Systems Network Consensus

Parameter
Adaptation

Error 
Generation

System

Consensus
Error

◮ How do we achieve consensus and learning
without a reference model?

◮ Can synchronous inputs enhance adaptation?
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Introduction and Outline

◮ Synchronization can hurt learning
◮ Example of two unstable systems (builds on Narendra’s recent work)

◮ Synchronization and Learning in Networks
◮ Results Using Graph Theory

◮ Concrete connections to classic adaptive control (if time allows)
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Synchronization vs. Learning:

Tradeoffs
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Two systems stabilizing each other
Consider two unstable systems [Narendra and Harshangi (2014)]

Σ1 : ẋ1(t) = a1(t)x1(t) + u1(t)

Σ2 : ẋ2(t) = a2(t)x2(t) + u2(t)

Update laws

ȧ1(t) = −x1(t)e(t) a1(0) > 0

ȧ2(t) = x2(t)e(t) a2(0) > 0

with e = x1 − x2.
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Synchronization Hurts Learning

Synchronous Input

u1 = −e

u2 = +e

e = x1 − x2
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Desynchronous Input

u1 = +e

u2 = −e
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Stability Results for Synchronous and Desynchronous

Inputs

Σ1 : ẋ1(t) = a1(t)x1(t) + u1(t)

Σ2 : ẋ2(t) = a2(t)x2(t) + u2(t)

ȧ1(t) = −x1(t)e(t)

ȧ2(t) = x2(t)e(t)

Theorem: Synchronous Inputs

The dynamics above with synchronous inputs have a set of initial
conditions with non-zero measure for which x1 and x2 tend to
infinity while e ∈ L2 ∩ L∞ and e → 0 as t → ∞. Furthermore,
this set of initial conditions that are unstable is also unbounded.

Theorem: Desynchronous Inputs

The dynamics above with desynchronous inputs are stable for all
a1(0) 6= a2(0)
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Synchronization and learning in

networks
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Graph Notation and Consensus

Graph : G(V , E)

Vertex Set : V = {v1, v2, . . . , vn}

Edge Set : (vi, vj) ∈ E ⊂ V × V

v1

v2 v3

v4

Adjacency Matrix : [A]ij =

{

1 if (vj , vi) ∈ E

0 otherwise

In-degree Laplacian : L(G) = D(G) −A(G)

In-degree of Node i : [D]ii

Consensus Problem

Σi : ẋi = −
∑

j∈Nin(i)

(xi − xj)

Using Graph Notation

Σ : ẋ = −Lx, x = [x1, x2, . . . , xn]
T
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Review: Sufficient Condition for Consensus

Σ : ẋ = −Lx

Theorem: (Olfati-Saber and Murray, 2004)

For the dynamics above with G strongly connected it follows that
limt→∞ x(t) = ζ1, for some finite ζ ∈ R. If G is also balanced

then ζ = 1
n

∑n

i=1 xi(0), i.e. average consensus is reached.

strongly connected there is a walk between any two vertices in the
network.

balanced if the in-degree of each node is equal to its out-degree.

◮ Any strongly connected digraph can be balanced
(Marshall and Olkin, 1968).

◮ Distributed algorithms exist to balance a digraph
(Dominguez-Garcia and Hadjicostis, 2013).
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Return to Adaptive Stabilization

Consider a set of n possibly unstable systems

Σi ẋi(t) = aixi + θi(t)x

Update Law

θ̇i = −xi

∑

j∈Nin(i)

(xi − xj)

Compact form

Σ : ẋ = Ax+ diag(θ)x [A]ii = ai

θ̇ = −x ◦ Lx θ = [θ1, θ2, . . . , θn]
T
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Stabilization over Strongly Connected Graphs

ẋ = Ax+ diag(θ)x

θ̇ = −x ◦ Lx

Theorem

For the dynamics above with G a strongly connected digraph, and all
the ai + θi(0) not identical it follows that limt→∞ x(t) = 0.

◮ G is strongly connected =⇒ λi(L) ∈ closed right-half plane of C.
◮ −L is Metzler =⇒ ∃ Diagonal D > 0 s.t. −LTD −DL ≤ 0.
◮ Non-increasing function

n∑
i=1

[D]iiθi(t) = −

∫
t

0

xTDLx dt+
n∑

i=1

[D]iiθi(0)

= −
1

2

∫
t

0

xT(DL+ L
TD)xdt+

n∑
i=1

[D]iiθi(0).

◮ L1 = 0 =⇒ 1
T(DL+ LTD)1 = 0.

◮ ∃ κ , λ2(DL+ LTD) > 0 =⇒
∑

i
[D]iiθi(t) ≤ −κ

∫
xTx dt+

∑
i
θi(0)

when x /∈ span(1).
12 / 22



Stabilization over Connected Graphs

◮ Any connected digraph can be partitioned into disjoint subsets called
Strongly Connected Components (SCCs) where each subsets is a
maximal strongly connected subgraph

Graph
G

Condensed Graph
GSCC

condensed nodes in red

root

◮ For any connected G the corresponding GSCC is a Directed Acyclic

Graph (DAG)

◮ Every connected DAG contains a root node (not unique).
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Stabilization over Connected Graphs Cont.

ẋ = Ax+ diag(θ)x

θ̇ = −x ◦ Lx

Theorem

For the dynamics above with the adaptation occurring over a con-
nected graph G such that a root can be chosen in GSCC that is a
condensed node, then limt→∞ x(t) = 0

◮ The root is a strongly connected subgraph (thus stabilizes itself)
◮ All information flowing over G decimates from a stable SCC.
◮ Stability of each SCC then follows from the hierarchical structure of

the DAG.

GSCC
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Stabilization over Connected Graphs: Example of Necessity

This node can
never stabilize if
initially unstable
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Consensus and Leaning

Bring everything together as a layered architecture

◮ The communication graph is G

◮ Ga is the adaptation graph and is constrained by the communication
in G

◮ Gs is the synchronization graph and is similarly constrained

G

Ga

Gs

(Doyle and Csete, 2011), (Alderson and Doyle, 2010)
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Adaptive Stabilization over a Network

Σ : ẋ = Ax+ diag(θ)x

θ̇ = −x ◦ Lax

Ga =

t
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Adaptive Stabilization and Desynchronous Input

Σ : ẋ = Ax+ Lsx+ diag(θ)x

θ̇ = −Γx ◦ Lax

Ga = Gs =

t
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Summary
Borrowing from Narendra, Murray, and My Thesis, we have

◮ Found that synchronization can hurt learning.
◮ As always context is important
◮ What about other learning paradigms, i.e. Jadbabaie’s work or the

broader Machine Learning literature
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Closed-loop Reference Model (CRM)

-

∑

∑

θ(t)

r

xm

x

e

γ

ℓ

Reference Model

Plant

feedback gain

learning rate
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How does CRM Help?

Classic Open-loop

Reference Model (ORM)
Adaptive (ℓ = 0)

◮ The reference model
does not adjust to any
outside factors

reference: x
m

plant: x

t

Closed-loop Reference

Model (CRM) Adaptive

◮ The reference model
adjusts to rapidly reduce
the model following
error e = x− xm

reference: x
m

plant: x

t
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CRM Simulation Examples
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	Conclusions

