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Problem Statement

Adaptive Systems

Network Consensus

System

Error
Generation

Parameter
Adaptation

Consensus

Error

» How do we achieve consensus and learning

without a reference model?

» Can synchronous inputs enhance adaptation?
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Introduction and Outline

» Synchronization can hurt learning
» Example of two unstable systems (builds on Narendra's recent work)

» Synchronization and Learning in Networks
» Results Using Graph Theory

» Concrete connections to classic adaptive control (if time allows)



Synchronization vs. Learning:
Tradeoffs



Two systems stabilizing each other

Consider two unstable systems | ]
21 : xl(t) = aq (t)xl(t) + ul(t)
Yo 9 (t) = as (t){L‘Q (t) + uo (t)
Update laws
a1(t) = —z1(t)e(t) a1(0) >0
a2(t) = zo(t)e(t) a2(0) >0
with e = 21 — x9.
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Synchronization Hurts Learning

KSynchronous Input
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Stability Results for Synchronous and Desynchronous

Inputs
21 LCl(t) = a1 (t)fEl (t) =+ U1 (t)
Yo To (t) = a2 (t)(EQ (t) —+ Uo (t)
a1 (t) = —a1 (t)e(t)
ag(t) = wa(t)e(t)

Theorem: Synchronous Inputs

The dynamics above with synchronous inputs have a set of initial
conditions with non-zero measure for which x; and x5 tend to
infinity while e € L3N Ly and e — 0 as ¢ — co. Furthermore,
this set of initial conditions that are unstable is also unbounded.

Theorem: Desynchronous Inputs

The dynamics above with desynchronous inputs are stable for all

a1(0) # a3(0)




Synchronization and learning in
networks



Graph Notation and Consensus

Graph: G(V,€)
Vertex Set: V = {v1,v2,...,0,}
Edge Set: (v;,v;) €eECV xV

. . 1 if (’U‘ ’Ui) e&
Ad Matrix : [A];; = o

jacency Matrix: [Al;; {O otherwise
In-degree Laplacian: £(G) = D(G) — A(G)

In-degree of Node 7 : [D];;

Consensus Problem
27;: :i,‘i:— Z (1177;—:13]')
JENn (4)
Using Graph Notation

DI

i =—Lx, x=|r1, Tay...y X




Review: Sufficient Condition for Consensus

Y: 1=—-Lx

Theorem: (Olfati-Saber and Murray, 2004)

For the dynamics above with G strongly connected it follows that
lim; o0 z(t) = (1, for some finite { € R. If G is also balanced

then ¢ = £ 37" | #;(0), i.e. average consensus is reached.

strongly connected there is a walk between any two vertices in the
network.
balanced if the in-degree of each node is equal to its out-degree.

> Any strongly connected digraph can be balanced

» Distributed algorithms exist to balance a digraph




Return to Adaptive Stabilization

Consider a set of n possibly unstable systems

DITI (t) =a;x; +0; (t)x

Update Law
91‘ = —; Z (.231 — l‘j)
JENn (7)
Compact form
PN & = Az + diag(f)x [A)ii = a;

0=—zo0Llx 0 =101, 6s,...

, 0n]7
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Stabilization over Strongly Connected Graphs

z = Az + diag(0)x
0=—xoLlx

For the dynamics above with G a strongly connected digraph, and all
the a; + 6;(0) not identical it follows that lim;—,. z(¢) = 0.

v

G is strongly connected = \;(L) € closed right-half plane of C.
—L is Metzler = 3 Diagonal D > 0s.t. —£'D — DL <0.
Non-increasing function

vy

n

> [Dbi(t) = — /t &' DLz dt + Zn:[p]“-ei(o)
= —% /Ot «" (DL + LT D)z dt + an[D]iiOi(O).

v

L1=0 = 1"(DL+L"D)1=0.
FrEXN(DL+LTD) >0 = 3,[D]ibi(t) < —k [Tz dt + 3, 0:(0)
when z ¢ span(1). O

v



Stabilization over Connected Graphs

» Any connected digraph can be partitioned into disjoint subsets called
Strongly Connected Components (SCCs) where each subsets is a
maximal strongly connected subgraph

Condensed Graph

SCC
g root

condensed nodes in red

» For any connected G the corresponding G5¢¢

Graph (DAG)

is a Directed Acyclic

» Every connected DAG contains a root node (not unique).
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Stabilization over Connected Graphs Cont.

& = Ax + diag(0)x
0=—zo0Llx

For the dynamics above with the adaptation occurring over a con-

nected graph G such that a root can be chosen in GSCC that is a
condensed node, then lim;_, . z(t) = 0

> The root is a strongly connected subgraph (thus stabilizes itself)
» All information flowing over G decimates from a stable SCC.

» Stability of each SCC then follows from the hierarchical structure of
the DAG.

gSCC



Stabilization over Connected Graphs: Example of Necessity

This node can
never stabilize if
initially unstable
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Consensus and Leaning

Bring everything together as a layered architecture
» The communication graph is G
» G, is the adaptation graph and is constrained by the communication
in g

» G, is the synchronization graph and is similarly constrained
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Adaptive Stabilization over a Network

Y¥: &= Az + diag(0)z
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Adaptive Stabilization and Desynchronous Input

Y: &=Azx+ L.+ diag(f)x
§=-Tzol,x
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Summary

Borrowing from Narendra, Murray, and My Thesis, we have

» Found that synchronization can hurt learning.

> As always context is important

» What about other learning paradigms, i.e. Jadbabaie's work or the

broader Machine Learning literature
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Closed-loop Reference Model (CRM)

feedback gain

e <
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How does CRM Help?

Classic Open-loop
Reference Model (ORM)
Adaptive (¢ =0)
» The reference model
does not adjust to any
outside factors

Closed-loop Reference
Model (CRM) Adaptive

» The reference model
adjusts to rapidly reduce
the model following
error e = T — Xy

-—- reference:

— plant: z
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How do you choose ~ and '¢?
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	Conclusions

