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The Microbiome

@® The microbiome is the aggregate of

[Scientific American]
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Bacteriotherapy
Bacteriotherapy: communities of bacteria administered to patients for specific therapeutic
applications
= “bugs-as-drugs”
Clostridium difficile infection
= Causes serious diarrhea (14K deaths/yr)

= Antibiotics disrupt helpful bacteria in gut
= Increasingly difficult to treat with conventional therapies (more antibiotics): 20-30%

recurrence rate

Pharmacology meets Ecology
positive microbe A produces a small

molecule (metabolite) that
microbe B needs

negative two microbes competing for
the same niche

what if there were 300 bugs in the
network?

microbial interaction network




Workflow in our lab

= 16S rRNA on MiSeq
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Microbial Dynamics

= Abundance of microbe i at time ¢ : x;;

dXt i
5 = X+ Buxt + D Bixeixe +
J#i
[ growth, carrying capacity, interaction, ]

= Convert to discrete time

2
Xkt1,i = Xp,i + (aixk,i + Biixy ; + E ,Bijxk,ixk,j>Ak + (Wet1, — Wei)V A,
J#i

[ discrete time step size ]

Next we discuss the three main ingredients to our model
@ Clustering (interaction modules)
@® Edge selection (structure learning, variable selection)
© Introduction of an auxiliary variable between the measurement model



Complete Model

Dirichlet Process Edge Selection (Structure)

me | @ ~ Stick(a) Ze,c; | T2~ Bernouli(m,)

C; | we ~ Multinomial(mc)

be, ¢, | ob ~ Normal(0, aﬁ) Self Interactions

ai 1,32 | 0a ~ Normal(0,07) @

ezt
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Dynamics
Xk+1,i | Xk,ar,j,b,C,Z,O'w ~ k € [m]
) i€ [n]
Normal (Xk}i"’xk,i (aj#1+aj72xk,i+z bc, ¢ Zcc; Xk,j) ) AIc"'w) - _

cjF#Ci

Viil oy, dki ~ f(dr:) f € {Neg. Bin., Log Norm., ...}

Constraint and Measurement Model @
2 S
Qi,i | Xk,i ~ Normal(Xy,:, 0q) :




Simple example without the intermediate auxiliary variable

Xt41,i | Xt,a ~ Normalzo(a,'Tf(xt), O’fi

Note the truncated dis-

2
Yt,i | Xt,i ~ Normalso(x¢,i,0y,) OLe |
tributions for x and y

a; ~ Normal(0, Ji )

Normalso(x; u(a, x), o?)
Pa|x X Dx|aPx|aPaPa

Normal(a;0,c?)

e 707 (x—n(ax))? e~
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o

Sampling for other variables
= Filtering (sampling from posterior of x) is challenging
= Can not use collapsed Gibbs sampling for Dirichlet Process or Edge Selection 8/13



Introducing an auxiliary variable

Xt41,i | Xt, @~ Normal(az—f(xt), ofi)

2
i | Xg.i ~ Normal(xg ;, O . . -
Qi | Xpi (%k.i, 7q) Prior on q is positive,

relaxing the distribution
on the dynamics for x

qk,; ~ Uniform[0, L)
Yi,i | Oy, Qi,i ~ Normalso(ay,, oy)

a; ~ Normal(0, Ufi )

Parameter inference Gibbs step: a(9t1) ~ Pajx (- | x(9)
= Direct sampling from the posterior now possible (Bayesian Regression!)

Sampling for other variables
= Collapsed Gibbs sampling for Dirichlet Process and Edge Selection (integrate out a)
= Filtering is still challenging but easier to design proposals than before (MH)
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Synthetic consortia of small microbial community

= Microbes engineered to overproduces one amino acid

Ty

A

= Microbes engineered to need three amino acids

= Compare inference on WT and engineered strains to

Marika Ziesack . typhimuriam prove that engineering was performed.
Silver Lab, Harvard
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Animal experiments with Clostridium difficile infection

= Colonize mice with a defined complex of 12 bacteria (GnotoComplex), then challenge with
Clostridium difficile

:0 ® GnotoComplex ® c. difficile
0
1 ]
Day 1 "Day 28 Day 56

= 5 mice (26 fecal samples taken from each, 16s and universal gPCR)

Microbe Co-cluster Proportions Microbe Interaction Strength  log10
1
Clostridium difficile 1 Clostridium difficile 1 -8
Proteus mirabilis 2 Proteus mirabilis 2
Clostridium ramosum 3 Clostridium ramosum 3 -9
Bacteroides ovatus 4 Bacteroides ovatus 4

Clostridium scindens 5
Escherichia coli 6
Ruminococcus obeum 7
Akkermansia muciniphila 8
Parabacteroides distasonis 9
Bacteroides vulgatus 10

0.2 Roseburia hominis 11
Bacteroides fragilis 12
Klebsiella oxytoca 13

Clostridium scindens 5
Escherichia coli 6
Ruminococcus obeum 7| |
Akkermansia muciniphila 8
Parabacteroides distasonis 9
Bacteroides vulgatus 10
Roseburia hominis 11
Bacteroides fragilis 12
Klebsiella oxytoca 13

gram/(CFU-day)
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Conclusions

We have presented
= Fully Bayesian inference model for microbial dynamics
= Interpretability features

= Reducing the microbial interaction network complexity via extraction of modular features
= Edge Selection so as to give us confidence as to what interactions are real

Future Directions

= Apply algorithm to mice that have been administered human fecal samples (complex flora
300+ species)

= Approximate Bayesian methods for dynamical systems analysis

= Modeling host dynamics (Layered latent dynamical processes)
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