# Robust and Scalable Models of Microbiome Dynamics for Bacteriotherapy Design

Travis E. Gibson<sup>1</sup> Georg K. Gerber<sup>1,2</sup>

 $^{1}{
m Massachusetts}$  Host Microbiome Center Brigham and Women's Hospital and Harvard Medical School

<sup>2</sup>Health Sciences and Technology Division Harvard-MIT

December 9, 2017 NIPS 2017 Workshop on Machine Learning in Computational Biology

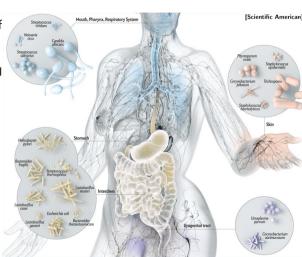
### Outline

- 1 Background on the Human Microbiome
- **2** From Experimental Design to Bacteriotherapies
- 3 Model of microbial dynamics
- 4 Inference Model
- 6 Applications

Gerber Lab is looking for Post-docs and PhD students

### The Microbiome

- The microbiome is the aggregate of microorganisms that resides on or within any of a number of human tissues and biofluids:
  - skin, mammary glands, placenta, seminal fluid, uterus, ovarian follicles, lung, saliva, oral mucosa, conjunctiva, biliary and gastrointestinal tracts) [wikipedia]
- 10<sup>14</sup> Microbes in/on your body [Sender et al. PLoS Biology 2016]
- **3**.3 million genes compared to 23,000 human genes [Qin et al. *Nature* 2010]
- 4 Large component of the immune system
- 6 Play a role in a variety of human diseases:
  - infections, arthritis, food allergy, cancer, inflammatory bowel disease, neurological diseases, and obesity/diabetes



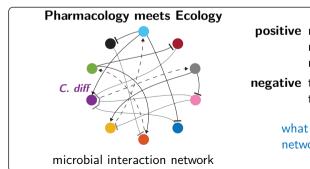
### Bacteriotherapy

**Bacteriotherapy**: communities of bacteria administered to patients for specific therapeutic applications

"bugs-as-drugs"

#### Clostridium difficile infection

- Causes serious diarrhea (14K deaths/yr)
- Antibiotics disrupt helpful bacteria in gut
- Increasingly difficult to treat with conventional therapies (more antibiotics): 20-30%



positive microbe A produces a small molecule (metabolite) that microbe B needs

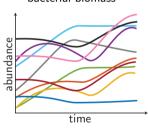
**negative** two microbes competing for the same niche

what if there were 300 bugs in the network?

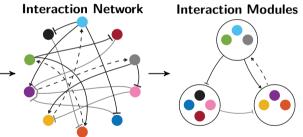
### Workflow in our lab

batch experiments chemostat animal experiments

- 16S rRNA on MiSeq (reads) for relative abundances of species
- 16S rRNA qPCR (universal primers) for bacterial biomass



measurements - irregular, sparse & noisy



- 300 species
- 90,000 interactions

### Microbial Dynamics

• Abundance of microbe i at time t :  $\mathbf{x}_{t,i}$ 

$$\frac{\mathrm{d}\mathbf{x}_{t,i}}{\mathrm{d}t} = \boldsymbol{\alpha}_i \mathbf{x}_{t,i} + \frac{\boldsymbol{\beta}_{ii}}{\boldsymbol{\beta}_{ii}} \mathbf{x}_{t,i}^2 + \sum_{j \neq i} \boldsymbol{\beta}_{ij} \mathbf{x}_{t,i} \mathbf{x}_{t,j} + \frac{\mathrm{d}\mathbf{w}_{t,i}}{\mathrm{d}t}$$

growth, carrying capacity, interaction, stochastic disturbance

Convert to discrete time

$$\mathbf{x}_{k+1,i} = \mathbf{x}_{k,i} + \left( oldsymbol{lpha}_i \mathbf{x}_{k,i}^2 + oldsymbol{eta}_{j 
eq i} oldsymbol{eta}_{ij} \mathbf{x}_{k,i} \mathbf{x}_{k,j} 
ight) \! \Delta_k + (\mathbf{w}_{k+1,i} - \mathbf{w}_{k,i}) \sqrt{\Delta_t}$$

discrete time step size

Next we discuss the three main ingredients to our model

- Clustering (interaction modules)
- Edge selection (structure learning, variable selection)
- Introduction of an auxiliary variable between the measurement model

### Complete Model

#### Dirichlet Process

$$egin{aligned} m{\pi_c} \mid m{lpha} &\sim \mathtt{Stick}(m{lpha}) \ & m{\mathtt{c}}_i \mid m{\pi_c} &\sim \mathtt{Multinomial}(m{\pi_c}) \end{aligned}$$

$$\mathbf{b_{c_i,c_j}} \mid \boldsymbol{\sigma_b} \sim \mathtt{Normal}(0, \boldsymbol{\sigma_b^2})$$

### Edge Selection (Structure)

$$\mathsf{z}_{\mathsf{c}_i,\mathsf{c}_j} \mid \pi_\mathsf{z} \sim \mathtt{Bernouli}(\pi_\mathsf{z})$$

### Self Interactions

 $\mathbf{a}_{i,1}, \mathbf{a}_{i,2} \mid \boldsymbol{\sigma}_{\mathbf{a}} \sim \text{Normal}(0, \boldsymbol{\sigma}_{\mathbf{a}}^2)$ 

### **Dynamics**

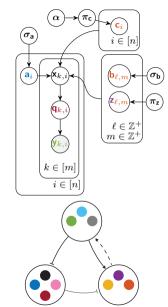
$$\mathsf{x}_{k+1,i} \mid \mathsf{x}_k, \mathsf{a}_i, \mathsf{b}, \mathsf{c}, \mathsf{z}, \sigma_\mathsf{w} \sim$$

$$\mathtt{Normal}\Big(\mathbf{x}_{k,i} + \mathbf{x}_{k,i}\Big(\mathbf{a}_{i,1} + \mathbf{a}_{i,2}\mathbf{x}_{k,i} + \sum_{\mathbf{c}_j \neq \mathbf{c}_i} \mathbf{b}_{\mathbf{c}_i,\mathbf{c}_j}\mathbf{z}_{\mathbf{c}_i,\mathbf{c}_j}\mathbf{x}_{k,j}\Big), \Delta_k \sigma_{\mathbf{w}}^2\Big)$$

### Constraint and Measurement Model

$$\mathbf{q}_{k,i} \mid \mathbf{x}_{k,i} \sim \mathtt{Normal}(\mathbf{x}_{k,i}, oldsymbol{\sigma}_{\mathbf{q}}^2)$$

 $\mathbf{v}_{k,i} \mid \boldsymbol{\sigma}_{\mathbf{v}}, \mathbf{q}_{k,i} \sim f(\mathbf{q}_{k,i}) \quad f \in \{\text{Neg. Bin., Log Norm., } \ldots\}$ 



## Simple example without the intermediate auxiliary variable

Note the truncated distributions for  $\boldsymbol{x}$  and  $\boldsymbol{y}$ 

Parameter inference Gibbs step:  $\mathbf{a}^{(g+1)} \sim p_{\mathbf{a}|\mathbf{x}}(\cdot \mid \mathbf{x}^{(g)})$ 

$$\begin{split} & \operatorname{Normal}_{\geq 0}(\mathbf{x}; \mu(\mathbf{a}, \mathbf{x}), \sigma^2) \\ & p_{\mathbf{a}|\mathbf{x}} \propto p_{\mathbf{x}|\mathbf{a}} p_{\mathbf{a}} p_{\mathbf{a}} p_{\mathbf{a}} \\ & \downarrow \\ & \operatorname{Normal}(\mathbf{a}; 0, \sigma^2) \\ & = \frac{\mathbf{e}^{-\frac{1}{2\sigma^2}(\mathbf{x} - \mu(\mathbf{a}, \mathbf{x}))^2}}{\sigma \sqrt{2\pi} \left(\Phi(\infty) - \Phi\left(-\frac{\mu(\mathbf{a}, \mathbf{x})}{\sigma}\right)\right)} \frac{\mathbf{e}^{-\frac{1}{2\sigma^2}\mathbf{a}^2}}{\sigma \sqrt{2\pi}} \end{split}$$

Sampling for other variables

- Filtering (sampling from posterior of x) is challenging
- Can not use collapsed Gibbs sampling for Dirichlet Process or Edge Selection

### Introducing an auxiliary variable

$$\begin{aligned} \mathbf{x}_{t+1,i} \mid \mathbf{x}_{t}, \mathbf{a} &\sim \texttt{Normal}(\mathbf{a}_{i}^{\mathsf{T}} f(\mathbf{x}_{t}), \sigma_{\mathbf{x}_{i}}^{2}) & & & & \\ \mathbf{q}_{k,i} \mid \mathbf{x}_{k,i} &\sim \texttt{Normal}(\mathbf{x}_{k,i}, \sigma_{\mathbf{q}}^{2}) & & & & \\ \mathbf{q}_{k,i} &\sim \texttt{Uniform}[0, L) & & & & & \\ \mathbf{y}_{k,i} \mid \sigma_{\mathbf{y}}, \mathbf{q}_{k,i} &\sim \texttt{Normal}_{\geq 0}(\mathbf{q}_{k,i}, \sigma_{\mathbf{y}}^{2}) & & & & \\ \mathbf{a}_{i} &\sim \texttt{Normal}(0, \sigma_{\mathbf{a}_{i}}^{2}) & & & & \\ \mathbf{y}_{i} &\sim \texttt{Normal}(0, \sigma_{\mathbf{a}_{i}}^{2}) & & & & \\ \mathbf{y}_{i} &\sim \texttt{Normal}(0, \sigma_{\mathbf{a}_{i}}^{2}) & & \\ \mathbf{y}_{i} &\sim \texttt{Normal}(0, \sigma_{\mathbf{a}_{i}}^{$$

Prior on  $\mathbf{q}$  is positive, relaxing the distribution on the dynamics for  $\mathbf{x}$ 

Parameter inference Gibbs step:  $\mathbf{a}^{(g+1)} \sim p_{\mathbf{a}|\mathbf{x}}(\cdot \mid \mathbf{x}^{(g)})$ 

Direct sampling from the posterior now possible (Bayesian Regression!)

### Sampling for other variables

- Collapsed Gibbs sampling for Dirichlet Process and Edge Selection (integrate out a)
- Filtering is still challenging but easier to design proposals than before (MH)

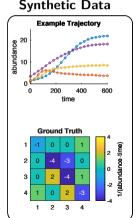
### Synthetic consortia of small microbial community



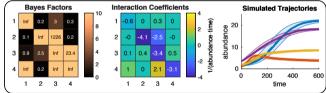
Marika Ziesack Silver Lab. Harvard

- Microbes engineered to overproduces one amino acid
- Microbes engineered to need three amino acids
- Compare inference on WT and engineered strains to prove that engineering was performed.

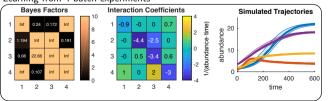
#### Synthetic Data



#### Learning from 2 batch experiments

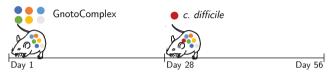


#### Learning from 4 batch experiments

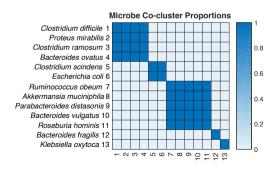


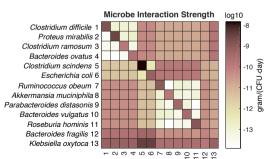
### Animal experiments with Clostridium difficile infection

 Colonize mice with a defined complex of 12 bacteria (GnotoComplex), then challenge with Clostridium difficile



• 5 mice (26 fecal samples taken from each, 16s and universal qPCR)





### Conclusions

#### We have presented

- Fully Bayesian inference model for microbial dynamics
- Interpretability features
  - Reducing the microbial interaction network complexity via extraction of modular features
  - Edge Selection so as to give us confidence as to what interactions are real

#### **Future Directions**

- Apply algorithm to mice that have been administered human fecal samples (complex flora 300+ species)
- Approximate Bayesian methods for dynamical systems analysis
- Modeling host dynamics (Layered latent dynamical processes)

Funding: DARPA, NIH

Acknowledge: Organizers, Gerber Lab, Bry Lab, Silver Lab

email: tgibson@mit.edu

### Gerber Lab Plug

### Gerber Lab is looking for post-docs and PhD students

Georg K. Gerber, MD, PhD, (ggerber@bwh.harvard.edu)

- Assistant Professor, Harvard Medical School
- Co-Director, Massachusetts Host-Microbiome Center
- Member of the Harvard-MIT Health Sciences & Technology Faculty
- Associate Pathologist, Center for Advanced Molecular Diagnostics Department of Pathology, Brigham and Women's Hospital